Properties

Label 4-2450e2-1.1-c1e2-0-24
Degree $4$
Conductor $6002500$
Sign $1$
Analytic cond. $382.724$
Root an. cond. $4.42304$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 3·9-s − 4·11-s + 16-s − 12·19-s − 18·29-s + 8·31-s + 3·36-s + 14·41-s + 4·44-s + 20·59-s − 2·61-s − 64-s + 4·71-s + 12·76-s − 20·79-s + 2·89-s + 12·99-s − 6·101-s + 18·109-s + 18·116-s − 10·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1/2·4-s − 9-s − 1.20·11-s + 1/4·16-s − 2.75·19-s − 3.34·29-s + 1.43·31-s + 1/2·36-s + 2.18·41-s + 0.603·44-s + 2.60·59-s − 0.256·61-s − 1/8·64-s + 0.474·71-s + 1.37·76-s − 2.25·79-s + 0.211·89-s + 1.20·99-s − 0.597·101-s + 1.72·109-s + 1.67·116-s − 0.909·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6002500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(382.724\)
Root analytic conductor: \(4.42304\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6002500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 61 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 117 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.813836587196226226741355963366, −8.375993269772858270578799366691, −8.141716446630987438498307722048, −7.51709438543367188847806807998, −7.46695195640450020994060669933, −6.82512007805533580885341957655, −6.27128022298553874526164451131, −5.94132964106281671931828193920, −5.72069370648719354687904553888, −5.20603240951320501985454212796, −4.85335017839183274127865422443, −4.19629552622464142466973928975, −4.00669417617934749328539377673, −3.55541401028347523403780501389, −2.76768342325529352061347305153, −2.31871374831885217339367391228, −2.21241915725933517271838017580, −1.16717194110638346518059984721, 0, 0, 1.16717194110638346518059984721, 2.21241915725933517271838017580, 2.31871374831885217339367391228, 2.76768342325529352061347305153, 3.55541401028347523403780501389, 4.00669417617934749328539377673, 4.19629552622464142466973928975, 4.85335017839183274127865422443, 5.20603240951320501985454212796, 5.72069370648719354687904553888, 5.94132964106281671931828193920, 6.27128022298553874526164451131, 6.82512007805533580885341957655, 7.46695195640450020994060669933, 7.51709438543367188847806807998, 8.141716446630987438498307722048, 8.375993269772858270578799366691, 8.813836587196226226741355963366

Graph of the $Z$-function along the critical line