Properties

Label 4-2450e2-1.1-c1e2-0-22
Degree $4$
Conductor $6002500$
Sign $1$
Analytic cond. $382.724$
Root an. cond. $4.42304$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 3·9-s − 10·11-s + 16-s − 6·19-s + 12·29-s + 8·31-s + 3·36-s − 22·41-s + 10·44-s + 8·59-s + 4·61-s − 64-s − 20·71-s + 6·76-s + 4·79-s − 22·89-s + 30·99-s + 36·109-s − 12·116-s + 53·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + ⋯
L(s)  = 1  − 1/2·4-s − 9-s − 3.01·11-s + 1/4·16-s − 1.37·19-s + 2.22·29-s + 1.43·31-s + 1/2·36-s − 3.43·41-s + 1.50·44-s + 1.04·59-s + 0.512·61-s − 1/8·64-s − 2.37·71-s + 0.688·76-s + 0.450·79-s − 2.33·89-s + 3.01·99-s + 3.44·109-s − 1.11·116-s + 4.81·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1/4·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6002500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(382.724\)
Root analytic conductor: \(4.42304\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6002500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.792311736872499710709956111953, −8.480645719412381995950143571902, −8.240062220808379565180363808354, −7.75221844997496956988729162755, −7.22972871033631525050809869205, −6.88813602571735589824037104794, −6.27776705825829606733848795820, −6.07165830844898030545968820545, −5.51659758232396871381930395763, −5.11002405248045217891381302415, −4.83535015245104865470929570050, −4.60487297833844137013602898135, −3.91841885518190209386700625795, −3.15619455694130266348025053715, −2.97191928692346512057964156740, −2.49071683744559344059936404983, −2.12181144244860667873958093578, −1.11675087360072396431518897735, 0, 0, 1.11675087360072396431518897735, 2.12181144244860667873958093578, 2.49071683744559344059936404983, 2.97191928692346512057964156740, 3.15619455694130266348025053715, 3.91841885518190209386700625795, 4.60487297833844137013602898135, 4.83535015245104865470929570050, 5.11002405248045217891381302415, 5.51659758232396871381930395763, 6.07165830844898030545968820545, 6.27776705825829606733848795820, 6.88813602571735589824037104794, 7.22972871033631525050809869205, 7.75221844997496956988729162755, 8.240062220808379565180363808354, 8.480645719412381995950143571902, 8.792311736872499710709956111953

Graph of the $Z$-function along the critical line