| L(s) = 1 | + 5-s + 2·7-s − 9·11-s − 3·13-s + 2·17-s + 3·19-s − 11·23-s − 5·25-s + 6·29-s + 2·35-s − 8·37-s − 7·41-s − 3·43-s − 10·47-s + 6·49-s − 12·53-s − 9·55-s − 2·59-s − 8·61-s − 3·65-s − 24·67-s − 2·71-s − 18·77-s − 4·79-s + 6·83-s + 2·85-s − 10·89-s + ⋯ |
| L(s) = 1 | + 0.447·5-s + 0.755·7-s − 2.71·11-s − 0.832·13-s + 0.485·17-s + 0.688·19-s − 2.29·23-s − 25-s + 1.11·29-s + 0.338·35-s − 1.31·37-s − 1.09·41-s − 0.457·43-s − 1.45·47-s + 6/7·49-s − 1.64·53-s − 1.21·55-s − 0.260·59-s − 1.02·61-s − 0.372·65-s − 2.93·67-s − 0.237·71-s − 2.05·77-s − 0.450·79-s + 0.658·83-s + 0.216·85-s − 1.05·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5992704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5992704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.556491516128697851743720547022, −8.273624835617332549233574880453, −7.83157532575406836752797062865, −7.80569646197547009506293796863, −7.42093380760426457102524274879, −6.95443816861363578705607312922, −6.15421566615013254096092063873, −6.10492418686780476505788051907, −5.50261866628589116699448543427, −5.19830291839091449792419528538, −4.84674296579727040910571177274, −4.60564059100914356517463134654, −3.89968005419426666950281285470, −3.26531733917561015548195253751, −2.85209457165435299255999584118, −2.47829054680165211813500209115, −1.69149065130193291566762435180, −1.65781140990140730814880686762, 0, 0,
1.65781140990140730814880686762, 1.69149065130193291566762435180, 2.47829054680165211813500209115, 2.85209457165435299255999584118, 3.26531733917561015548195253751, 3.89968005419426666950281285470, 4.60564059100914356517463134654, 4.84674296579727040910571177274, 5.19830291839091449792419528538, 5.50261866628589116699448543427, 6.10492418686780476505788051907, 6.15421566615013254096092063873, 6.95443816861363578705607312922, 7.42093380760426457102524274879, 7.80569646197547009506293796863, 7.83157532575406836752797062865, 8.273624835617332549233574880453, 8.556491516128697851743720547022