Properties

Label 4-243675-1.1-c1e2-0-6
Degree 44
Conductor 243675243675
Sign 11
Analytic cond. 15.536915.5369
Root an. cond. 1.985361.98536
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 22

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s − 4·7-s + 9-s + 3·12-s − 8·13-s + 5·16-s − 2·19-s + 4·21-s + 25-s − 27-s + 12·28-s − 3·36-s + 8·39-s − 20·43-s − 5·48-s − 2·49-s + 24·52-s + 2·57-s + 4·61-s − 4·63-s − 3·64-s − 32·67-s − 4·73-s − 75-s + 6·76-s − 16·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s − 1.51·7-s + 1/3·9-s + 0.866·12-s − 2.21·13-s + 5/4·16-s − 0.458·19-s + 0.872·21-s + 1/5·25-s − 0.192·27-s + 2.26·28-s − 1/2·36-s + 1.28·39-s − 3.04·43-s − 0.721·48-s − 2/7·49-s + 3.32·52-s + 0.264·57-s + 0.512·61-s − 0.503·63-s − 3/8·64-s − 3.90·67-s − 0.468·73-s − 0.115·75-s + 0.688·76-s − 1.80·79-s + ⋯

Functional equation

Λ(s)=(243675s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 243675 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(243675s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 243675 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 243675243675    =    33521923^{3} \cdot 5^{2} \cdot 19^{2}
Sign: 11
Analytic conductor: 15.536915.5369
Root analytic conductor: 1.985361.98536
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 22
Selberg data: (4, 243675, ( :1/2,1/2), 1)(4,\ 243675,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C1C_1 1+T 1 + T
5C1C_1×\timesC1C_1 (1T)(1+T) ( 1 - T )( 1 + T )
19C1C_1 (1+T)2 ( 1 + T )^{2}
good2C2C_2 (1T+pT2)(1+T+pT2) ( 1 - T + p T^{2} )( 1 + T + p T^{2} )
7C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
11C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
13C2C_2 (1+4T+pT2)2 ( 1 + 4 T + p T^{2} )^{2}
17C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
23C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
29C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
31C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
37C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
41C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
43C2C_2 (1+10T+pT2)2 ( 1 + 10 T + p T^{2} )^{2}
47C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
53C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
59C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
61C2C_2 (12T+pT2)2 ( 1 - 2 T + p T^{2} )^{2}
67C2C_2 (1+16T+pT2)2 ( 1 + 16 T + p T^{2} )^{2}
71C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
73C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
79C2C_2 (1+8T+pT2)2 ( 1 + 8 T + p T^{2} )^{2}
83C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
89C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
97C2C_2 (1+16T+pT2)2 ( 1 + 16 T + p T^{2} )^{2}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.450551892023889738347528214751, −8.255821268467971823002210114232, −7.28034875915901512150776673175, −7.20655519160802512316474001684, −6.50028762370085906668100412134, −6.11724584120824685520629468061, −5.26580762429388022199308033556, −5.15467699824668629469430799137, −4.39966598748280163950451872807, −4.19187417186236300755390321977, −3.13810729229125509539196623139, −2.93269055521134332794719136670, −1.68584050985555553185267943448, 0, 0, 1.68584050985555553185267943448, 2.93269055521134332794719136670, 3.13810729229125509539196623139, 4.19187417186236300755390321977, 4.39966598748280163950451872807, 5.15467699824668629469430799137, 5.26580762429388022199308033556, 6.11724584120824685520629468061, 6.50028762370085906668100412134, 7.20655519160802512316474001684, 7.28034875915901512150776673175, 8.255821268467971823002210114232, 8.450551892023889738347528214751

Graph of the ZZ-function along the critical line