| L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s + 6·9-s + 4·13-s + 5·16-s + 2·17-s − 12·18-s + 8·19-s + 10·25-s − 8·26-s − 6·32-s − 4·34-s + 18·36-s − 16·38-s − 8·43-s − 16·47-s − 49-s − 20·50-s + 12·52-s − 20·53-s − 24·59-s + 7·64-s − 8·67-s + 6·68-s − 24·72-s + 24·76-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s + 2·9-s + 1.10·13-s + 5/4·16-s + 0.485·17-s − 2.82·18-s + 1.83·19-s + 2·25-s − 1.56·26-s − 1.06·32-s − 0.685·34-s + 3·36-s − 2.59·38-s − 1.21·43-s − 2.33·47-s − 1/7·49-s − 2.82·50-s + 1.66·52-s − 2.74·53-s − 3.12·59-s + 7/8·64-s − 0.977·67-s + 0.727·68-s − 2.82·72-s + 2.75·76-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56644 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56644 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.9800067346\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9800067346\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35476316039365443178180347356, −11.79363940345498586897158986324, −11.17894939806280487742414525265, −10.85852910727115669316902048057, −10.38557010750087216502196945908, −9.818989973120345306846165255455, −9.570202616221430988824004669051, −9.165773174894196987499953940192, −8.429879563394443700876856131754, −8.022963046821189443495886909603, −7.34604714588017519340733516685, −7.23952794483880087821443207618, −6.34247778860463636263915020989, −6.23364129453637355620609250303, −4.91578518638780977122073699926, −4.74737115838155404846784134701, −3.32199763483264578429423763619, −3.24614941483912415817873523751, −1.52737554662896515067570835275, −1.31393537933617091426787390916,
1.31393537933617091426787390916, 1.52737554662896515067570835275, 3.24614941483912415817873523751, 3.32199763483264578429423763619, 4.74737115838155404846784134701, 4.91578518638780977122073699926, 6.23364129453637355620609250303, 6.34247778860463636263915020989, 7.23952794483880087821443207618, 7.34604714588017519340733516685, 8.022963046821189443495886909603, 8.429879563394443700876856131754, 9.165773174894196987499953940192, 9.570202616221430988824004669051, 9.818989973120345306846165255455, 10.38557010750087216502196945908, 10.85852910727115669316902048057, 11.17894939806280487742414525265, 11.79363940345498586897158986324, 12.35476316039365443178180347356