| L(s) = 1 | − 2·5-s − 4·11-s + 12·23-s − 6·25-s + 2·31-s − 10·37-s − 4·47-s + 49-s − 20·53-s + 8·55-s + 4·59-s − 6·67-s − 12·71-s + 16·89-s + 14·97-s + 22·103-s + 22·113-s − 24·115-s + 5·121-s + 22·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·155-s + ⋯ |
| L(s) = 1 | − 0.894·5-s − 1.20·11-s + 2.50·23-s − 6/5·25-s + 0.359·31-s − 1.64·37-s − 0.583·47-s + 1/7·49-s − 2.74·53-s + 1.07·55-s + 0.520·59-s − 0.733·67-s − 1.42·71-s + 1.69·89-s + 1.42·97-s + 2.16·103-s + 2.06·113-s − 2.23·115-s + 5/11·121-s + 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.321·155-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.32994653682455203611902037691, −6.66938418564011166987025652168, −6.27715350162813254254588582572, −5.88651630357657035997218510968, −5.29201046300854552098981090022, −4.89838737211202977970256624193, −4.75786338418925890570893868626, −4.18963825651619011324814561123, −3.48495088242546355656873096872, −3.22580159155146888967667912543, −2.92849382979062638668894882017, −2.11186382487233464040819101983, −1.64833873661739608707906833916, −0.73162045413681380754587187591, 0,
0.73162045413681380754587187591, 1.64833873661739608707906833916, 2.11186382487233464040819101983, 2.92849382979062638668894882017, 3.22580159155146888967667912543, 3.48495088242546355656873096872, 4.18963825651619011324814561123, 4.75786338418925890570893868626, 4.89838737211202977970256624193, 5.29201046300854552098981090022, 5.88651630357657035997218510968, 6.27715350162813254254588582572, 6.66938418564011166987025652168, 7.32994653682455203611902037691