| L(s) = 1 | + 4·5-s + 6·25-s − 12·31-s − 6·37-s + 16·47-s − 3·49-s + 8·53-s − 16·59-s + 12·67-s + 16·71-s − 18·97-s − 20·103-s + 12·113-s − 11·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 48·155-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + ⋯ |
| L(s) = 1 | + 1.78·5-s + 6/5·25-s − 2.15·31-s − 0.986·37-s + 2.33·47-s − 3/7·49-s + 1.09·53-s − 2.08·59-s + 1.46·67-s + 1.89·71-s − 1.82·97-s − 1.97·103-s + 1.12·113-s − 121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 3.85·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.150739018\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.150739018\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.14138435184472996060333222977, −6.86332832684052821068459260799, −6.39563309416645444640577414236, −5.99821846319176010930890092890, −5.59122064054907643983734498090, −5.31429249959323034777622557596, −5.10185913544822181303273448939, −4.31501877560891100648538803991, −3.87750152499774762541791196772, −3.49732911725552162776889995539, −2.71690870401398071253358924610, −2.43309238047466640492068721575, −1.75188361446711069680451437593, −1.58542652345615130243889988658, −0.58032102252110125603193766331,
0.58032102252110125603193766331, 1.58542652345615130243889988658, 1.75188361446711069680451437593, 2.43309238047466640492068721575, 2.71690870401398071253358924610, 3.49732911725552162776889995539, 3.87750152499774762541791196772, 4.31501877560891100648538803991, 5.10185913544822181303273448939, 5.31429249959323034777622557596, 5.59122064054907643983734498090, 5.99821846319176010930890092890, 6.39563309416645444640577414236, 6.86332832684052821068459260799, 7.14138435184472996060333222977