| L(s) = 1 | − 4·5-s + 6·25-s − 12·31-s − 6·37-s − 16·47-s − 3·49-s − 8·53-s + 16·59-s + 12·67-s − 16·71-s − 18·97-s − 20·103-s − 12·113-s − 11·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·155-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + ⋯ |
| L(s) = 1 | − 1.78·5-s + 6/5·25-s − 2.15·31-s − 0.986·37-s − 2.33·47-s − 3/7·49-s − 1.09·53-s + 2.08·59-s + 1.46·67-s − 1.89·71-s − 1.82·97-s − 1.97·103-s − 1.12·113-s − 121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.85·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.96879465993623359966806393591, −6.69748955021104135981971576950, −6.04827358917339105420475713580, −5.57571260820188604201792003117, −5.08110441572862246834109997892, −4.89091566704032150293070692440, −4.15092305092204511328110824824, −3.90096173614192286439118852116, −3.55206480118772872746711088458, −3.14373177401014801119395215864, −2.52352406274786635645054599652, −1.78736594070296552885309104120, −1.25794867878740401740310605613, 0, 0,
1.25794867878740401740310605613, 1.78736594070296552885309104120, 2.52352406274786635645054599652, 3.14373177401014801119395215864, 3.55206480118772872746711088458, 3.90096173614192286439118852116, 4.15092305092204511328110824824, 4.89091566704032150293070692440, 5.08110441572862246834109997892, 5.57571260820188604201792003117, 6.04827358917339105420475713580, 6.69748955021104135981971576950, 6.96879465993623359966806393591