| L(s) = 1 | + 2·5-s + 4·11-s − 12·23-s − 6·25-s + 2·31-s − 10·37-s + 4·47-s + 49-s + 20·53-s + 8·55-s − 4·59-s − 6·67-s + 12·71-s − 16·89-s + 14·97-s + 22·103-s − 22·113-s − 24·115-s + 5·121-s − 22·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·155-s + ⋯ |
| L(s) = 1 | + 0.894·5-s + 1.20·11-s − 2.50·23-s − 6/5·25-s + 0.359·31-s − 1.64·37-s + 0.583·47-s + 1/7·49-s + 2.74·53-s + 1.07·55-s − 0.520·59-s − 0.733·67-s + 1.42·71-s − 1.69·89-s + 1.42·97-s + 2.16·103-s − 2.06·113-s − 2.23·115-s + 5/11·121-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.321·155-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.98677245051625828825830843322, −6.54223999291913242941327330836, −6.27380165312445507248936845953, −5.82108474149237791263855008659, −5.56609872329202499047326229627, −5.19812630664501953142218654307, −4.38044858593097489967291482516, −4.14471956881028489130418910320, −3.74202563595538339907128216360, −3.34150325635290105487032453449, −2.46885933219614516342241696596, −2.06472568382136776326294570126, −1.76125012439458407724842469813, −1.01497262312281262820879941968, 0,
1.01497262312281262820879941968, 1.76125012439458407724842469813, 2.06472568382136776326294570126, 2.46885933219614516342241696596, 3.34150325635290105487032453449, 3.74202563595538339907128216360, 4.14471956881028489130418910320, 4.38044858593097489967291482516, 5.19812630664501953142218654307, 5.56609872329202499047326229627, 5.82108474149237791263855008659, 6.27380165312445507248936845953, 6.54223999291913242941327330836, 6.98677245051625828825830843322