| L(s) = 1 | − 8·5-s − 4·11-s − 8·23-s + 38·25-s − 8·31-s − 18·37-s + 24·47-s − 5·49-s + 16·53-s + 32·55-s − 8·59-s + 22·67-s − 16·71-s − 24·89-s + 10·97-s + 2·103-s − 24·113-s + 64·115-s + 5·121-s − 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 64·155-s + ⋯ |
| L(s) = 1 | − 3.57·5-s − 1.20·11-s − 1.66·23-s + 38/5·25-s − 1.43·31-s − 2.95·37-s + 3.50·47-s − 5/7·49-s + 2.19·53-s + 4.31·55-s − 1.04·59-s + 2.68·67-s − 1.89·71-s − 2.54·89-s + 1.01·97-s + 0.197·103-s − 2.25·113-s + 5.96·115-s + 5/11·121-s − 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 5.14·155-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5645376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.95550481778817521461633350929, −6.93075982000562056071935732627, −5.98169863058984240039929554681, −5.48459428248370426498378218555, −5.16761096456984954836245442455, −4.69178179475877015203781084126, −3.99250331289836498435902686175, −3.96888445081768568889397071606, −3.73519918195197314997392920657, −3.09788365205681643264055516753, −2.65117332689213995396045885303, −1.93826743358928134231516571874, −0.887032512301407325004527560286, 0, 0,
0.887032512301407325004527560286, 1.93826743358928134231516571874, 2.65117332689213995396045885303, 3.09788365205681643264055516753, 3.73519918195197314997392920657, 3.96888445081768568889397071606, 3.99250331289836498435902686175, 4.69178179475877015203781084126, 5.16761096456984954836245442455, 5.48459428248370426498378218555, 5.98169863058984240039929554681, 6.93075982000562056071935732627, 6.95550481778817521461633350929