Properties

Label 4-228e2-1.1-c1e2-0-1
Degree $4$
Conductor $51984$
Sign $1$
Analytic cond. $3.31454$
Root an. cond. $1.34929$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 6·7-s − 8-s − 2·9-s − 12-s − 6·14-s + 16-s + 2·18-s − 6·21-s + 24-s − 2·25-s + 5·27-s + 6·28-s + 10·29-s − 32-s − 2·36-s + 8·41-s + 6·42-s − 12·43-s − 48-s + 17·49-s + 2·50-s − 2·53-s − 5·54-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 2.26·7-s − 0.353·8-s − 2/3·9-s − 0.288·12-s − 1.60·14-s + 1/4·16-s + 0.471·18-s − 1.30·21-s + 0.204·24-s − 2/5·25-s + 0.962·27-s + 1.13·28-s + 1.85·29-s − 0.176·32-s − 1/3·36-s + 1.24·41-s + 0.925·42-s − 1.82·43-s − 0.144·48-s + 17/7·49-s + 0.282·50-s − 0.274·53-s − 0.680·54-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(51984\)    =    \(2^{4} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3.31454\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 51984,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.002343927\)
\(L(\frac12)\) \(\approx\) \(1.002343927\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_2$ \( 1 + T + p T^{2} \)
19$C_2$ \( 1 + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
23$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 75 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 126 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07113220366631324213557733826, −9.653830813477996218717673657091, −8.873193591013862940682562735246, −8.379818514815940464452750097868, −8.084215421719444367670114548405, −7.81913959227647380831995290089, −6.82267782243031164846670210174, −6.56087406329620377147621070166, −5.65022704699238663509395586647, −5.19815433970855149034522267235, −4.75813358390011036794135778335, −3.99371376987675738529571241648, −2.84360916951692733726955331621, −2.02605892764822334144730536655, −1.06391675847599943818182876252, 1.06391675847599943818182876252, 2.02605892764822334144730536655, 2.84360916951692733726955331621, 3.99371376987675738529571241648, 4.75813358390011036794135778335, 5.19815433970855149034522267235, 5.65022704699238663509395586647, 6.56087406329620377147621070166, 6.82267782243031164846670210174, 7.81913959227647380831995290089, 8.084215421719444367670114548405, 8.379818514815940464452750097868, 8.873193591013862940682562735246, 9.653830813477996218717673657091, 10.07113220366631324213557733826

Graph of the $Z$-function along the critical line