Properties

Label 4-2268e2-1.1-c0e2-0-15
Degree $4$
Conductor $5143824$
Sign $1$
Analytic cond. $1.28115$
Root an. cond. $1.06389$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 7-s + 5·25-s + 3·35-s + 2·37-s − 3·41-s − 43-s − 3·47-s − 3·59-s − 2·67-s + 79-s + 3·83-s + 2·109-s + 121-s + 6·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 5·175-s + ⋯
L(s)  = 1  + 3·5-s + 7-s + 5·25-s + 3·35-s + 2·37-s − 3·41-s − 43-s − 3·47-s − 3·59-s − 2·67-s + 79-s + 3·83-s + 2·109-s + 121-s + 6·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 5·175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5143824\)    =    \(2^{4} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.28115\)
Root analytic conductor: \(1.06389\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5143824,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.629483862\)
\(L(\frac12)\) \(\approx\) \(2.629483862\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 - T + T^{2} \)
good5$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.404131138151849460197724907370, −9.157459731001308067404370092454, −8.720675190731263099090895101008, −8.359109647841424439268837567252, −7.79656398431920366149453622911, −7.67195277408345010683696590284, −6.83540207813321222308032922865, −6.49511384356694360366106155218, −6.17117608634982345899998415721, −6.11263708493089180873039830152, −5.37956434648693243335753014504, −5.05958714357875029679961182122, −4.81335312708304757388116411562, −4.52698643413375076595754429571, −3.38674239052984311072261411925, −3.19474101201857219254464941387, −2.51342856847693899456278364096, −1.92249483388273833836499596630, −1.67705623700190681010836916939, −1.34210140320326139549277096549, 1.34210140320326139549277096549, 1.67705623700190681010836916939, 1.92249483388273833836499596630, 2.51342856847693899456278364096, 3.19474101201857219254464941387, 3.38674239052984311072261411925, 4.52698643413375076595754429571, 4.81335312708304757388116411562, 5.05958714357875029679961182122, 5.37956434648693243335753014504, 6.11263708493089180873039830152, 6.17117608634982345899998415721, 6.49511384356694360366106155218, 6.83540207813321222308032922865, 7.67195277408345010683696590284, 7.79656398431920366149453622911, 8.359109647841424439268837567252, 8.720675190731263099090895101008, 9.157459731001308067404370092454, 9.404131138151849460197724907370

Graph of the $Z$-function along the critical line