| L(s) = 1 | − 2·5-s + 6·9-s + 8·19-s − 25-s + 4·29-s − 16·31-s + 12·41-s − 12·45-s − 49-s − 8·59-s + 12·61-s + 24·71-s + 8·79-s + 27·81-s + 20·89-s − 16·95-s + 36·101-s + 28·109-s − 22·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + ⋯ |
| L(s) = 1 | − 0.894·5-s + 2·9-s + 1.83·19-s − 1/5·25-s + 0.742·29-s − 2.87·31-s + 1.87·41-s − 1.78·45-s − 1/7·49-s − 1.04·59-s + 1.53·61-s + 2.84·71-s + 0.900·79-s + 3·81-s + 2.11·89-s − 1.64·95-s + 3.58·101-s + 2.68·109-s − 2·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.840423748\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.840423748\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.153473697376734019700972831067, −9.137686707900680085913476179534, −8.314695529438921143449331470373, −7.85736555584818748408962285992, −7.67548951854078018943757900977, −7.36280658329113588010497697489, −7.01640001503473046161691473715, −6.75136866520401204692980621471, −6.01796098683231584210676222744, −5.76237766064378023577312360636, −5.06992073339014491621673593167, −4.83554825728377376280551939183, −4.41892627409401099006273881689, −3.80896328457004026173143164995, −3.48217703859000083218707859499, −3.38750467354747029544868907039, −2.16125677535040774435472701818, −2.05657384643093579597724417832, −1.09118947008733293021346928441, −0.70871702573805387919943549440,
0.70871702573805387919943549440, 1.09118947008733293021346928441, 2.05657384643093579597724417832, 2.16125677535040774435472701818, 3.38750467354747029544868907039, 3.48217703859000083218707859499, 3.80896328457004026173143164995, 4.41892627409401099006273881689, 4.83554825728377376280551939183, 5.06992073339014491621673593167, 5.76237766064378023577312360636, 6.01796098683231584210676222744, 6.75136866520401204692980621471, 7.01640001503473046161691473715, 7.36280658329113588010497697489, 7.67548951854078018943757900977, 7.85736555584818748408962285992, 8.314695529438921143449331470373, 9.137686707900680085913476179534, 9.153473697376734019700972831067