| L(s) = 1 | + 3-s + 2·5-s − 2·7-s + 3·9-s − 7·11-s − 3·13-s + 2·15-s + 5·17-s − 2·19-s − 2·21-s + 2·23-s + 3·25-s + 8·27-s + 3·29-s − 16·31-s − 7·33-s − 4·35-s + 4·37-s − 3·39-s + 2·41-s + 6·43-s + 6·45-s + 3·47-s + 3·49-s + 5·51-s − 10·53-s − 14·55-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.894·5-s − 0.755·7-s + 9-s − 2.11·11-s − 0.832·13-s + 0.516·15-s + 1.21·17-s − 0.458·19-s − 0.436·21-s + 0.417·23-s + 3/5·25-s + 1.53·27-s + 0.557·29-s − 2.87·31-s − 1.21·33-s − 0.676·35-s + 0.657·37-s − 0.480·39-s + 0.312·41-s + 0.914·43-s + 0.894·45-s + 0.437·47-s + 3/7·49-s + 0.700·51-s − 1.37·53-s − 1.88·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.327920017\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.327920017\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.395974814950879083279226335886, −8.965188769327273688629591428896, −8.455236411332211205886319644615, −7.962701631456653947542615130948, −7.57490923843974170141836969711, −7.49301554514809412248307777584, −7.01545349556250671686235454755, −6.53010976196831502227079732817, −6.00917397781434987084747583413, −5.72820970159234419898133277402, −5.23589701963254618285651913701, −4.84469293976948923208492079587, −4.59467857619858477638165897048, −3.82069093593627035379042340785, −3.18688025905670378389089845461, −3.08949764723252265928376375935, −2.33570628636096095604892261099, −2.17898061949279373872554101835, −1.38696184868339864919422400914, −0.49933168956732824256766810596,
0.49933168956732824256766810596, 1.38696184868339864919422400914, 2.17898061949279373872554101835, 2.33570628636096095604892261099, 3.08949764723252265928376375935, 3.18688025905670378389089845461, 3.82069093593627035379042340785, 4.59467857619858477638165897048, 4.84469293976948923208492079587, 5.23589701963254618285651913701, 5.72820970159234419898133277402, 6.00917397781434987084747583413, 6.53010976196831502227079732817, 7.01545349556250671686235454755, 7.49301554514809412248307777584, 7.57490923843974170141836969711, 7.962701631456653947542615130948, 8.455236411332211205886319644615, 8.965188769327273688629591428896, 9.395974814950879083279226335886