| L(s) = 1 | − 3-s + 2·5-s − 2·7-s − 9-s − 7·11-s + 3·13-s − 2·15-s − 17-s − 8·19-s + 2·21-s + 3·25-s − 5·29-s + 2·31-s + 7·33-s − 4·35-s − 10·37-s − 3·39-s − 2·45-s + 9·47-s + 3·49-s + 51-s + 6·53-s − 14·55-s + 8·57-s − 12·59-s + 2·63-s + 6·65-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.894·5-s − 0.755·7-s − 1/3·9-s − 2.11·11-s + 0.832·13-s − 0.516·15-s − 0.242·17-s − 1.83·19-s + 0.436·21-s + 3/5·25-s − 0.928·29-s + 0.359·31-s + 1.21·33-s − 0.676·35-s − 1.64·37-s − 0.480·39-s − 0.298·45-s + 1.31·47-s + 3/7·49-s + 0.140·51-s + 0.824·53-s − 1.88·55-s + 1.05·57-s − 1.56·59-s + 0.251·63-s + 0.744·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.760975126704104472798126933685, −8.691889320129556478339366763614, −8.057961367228640787276719687245, −7.72000079586027864267527122650, −7.20480465582430065115977063450, −6.87113633648011159920068264641, −6.25731794299334339414704817840, −6.16246587607197873764207343281, −5.57741415942539649970952661523, −5.54599048835834242428033548529, −4.93738826760294885342796553823, −4.54155038574519082095010134071, −3.87293143840550308815480320051, −3.52856452610335365195324901719, −2.66009562584759757029644016706, −2.62320767673832926271838277920, −1.99198778744404568029366434298, −1.30115390466568493480286475090, 0, 0,
1.30115390466568493480286475090, 1.99198778744404568029366434298, 2.62320767673832926271838277920, 2.66009562584759757029644016706, 3.52856452610335365195324901719, 3.87293143840550308815480320051, 4.54155038574519082095010134071, 4.93738826760294885342796553823, 5.54599048835834242428033548529, 5.57741415942539649970952661523, 6.16246587607197873764207343281, 6.25731794299334339414704817840, 6.87113633648011159920068264641, 7.20480465582430065115977063450, 7.72000079586027864267527122650, 8.057961367228640787276719687245, 8.691889320129556478339366763614, 8.760975126704104472798126933685