| L(s) = 1 | + 4·5-s − 3·9-s + 6·11-s + 16·19-s + 11·25-s − 2·29-s + 4·31-s − 12·41-s − 12·45-s − 49-s + 24·55-s + 20·59-s − 14·79-s − 16·89-s + 64·95-s − 18·99-s + 24·101-s − 14·109-s + 5·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + ⋯ |
| L(s) = 1 | + 1.78·5-s − 9-s + 1.80·11-s + 3.67·19-s + 11/5·25-s − 0.371·29-s + 0.718·31-s − 1.87·41-s − 1.78·45-s − 1/7·49-s + 3.23·55-s + 2.60·59-s − 1.57·79-s − 1.69·89-s + 6.56·95-s − 1.80·99-s + 2.38·101-s − 1.34·109-s + 5/11·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.903263691\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.903263691\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.444937754881889020976340612451, −8.806347243927272990309576059979, −8.743799939616966892473971278641, −8.174808188300188667863368179361, −7.63401815350136425103219077516, −7.16800269198948105149103308177, −6.69488843095879628863724483095, −6.68939003075776498415699966681, −5.83813556402404487514444157361, −5.82681068969927050468553979772, −5.27233249759591380841527085999, −5.14621923235676818267446416094, −4.53032506320539930054225881121, −3.64433858944728584870714096975, −3.55109348064170407627398046915, −2.81820823696117805048741695195, −2.63251548610733233969776936747, −1.68738533447412663463829885713, −1.36931380178288279734317856982, −0.850475093751458666498531711327,
0.850475093751458666498531711327, 1.36931380178288279734317856982, 1.68738533447412663463829885713, 2.63251548610733233969776936747, 2.81820823696117805048741695195, 3.55109348064170407627398046915, 3.64433858944728584870714096975, 4.53032506320539930054225881121, 5.14621923235676818267446416094, 5.27233249759591380841527085999, 5.82681068969927050468553979772, 5.83813556402404487514444157361, 6.68939003075776498415699966681, 6.69488843095879628863724483095, 7.16800269198948105149103308177, 7.63401815350136425103219077516, 8.174808188300188667863368179361, 8.743799939616966892473971278641, 8.806347243927272990309576059979, 9.444937754881889020976340612451