Properties

Label 4-2240e2-1.1-c0e2-0-2
Degree $4$
Conductor $5017600$
Sign $1$
Analytic cond. $1.24971$
Root an. cond. $1.05731$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 2·9-s − 25-s − 4·47-s + 3·49-s + 4·63-s + 3·81-s + 4·103-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s − 2·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 2·7-s + 2·9-s − 25-s − 4·47-s + 3·49-s + 4·63-s + 3·81-s + 4·103-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s − 2·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5017600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5017600\)    =    \(2^{12} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.24971\)
Root analytic conductor: \(1.05731\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5017600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.992737085\)
\(L(\frac12)\) \(\approx\) \(1.992737085\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
good3$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_1$ \( ( 1 + T )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.631300000662440740279224043059, −8.981570027274461453613256891649, −8.464676696127892362397824252305, −8.295089341788594883270856524188, −7.76597902520911339240629675434, −7.56768697351250667926202147923, −7.27324706375228574405779357587, −6.76398526671903995521756419248, −6.31653561507417524891879996530, −5.96512522636659351344432566769, −5.19694415713145036871169478614, −4.99077114415019405319091170088, −4.59899074737076501756232660675, −4.38703423884987908501704823677, −3.58676174791693956848194821155, −3.58194766541455781027288932579, −2.46768091778759055559457251370, −1.96421149648571824914392663660, −1.56767383836046793110270484746, −1.16363538154661757476284320733, 1.16363538154661757476284320733, 1.56767383836046793110270484746, 1.96421149648571824914392663660, 2.46768091778759055559457251370, 3.58194766541455781027288932579, 3.58676174791693956848194821155, 4.38703423884987908501704823677, 4.59899074737076501756232660675, 4.99077114415019405319091170088, 5.19694415713145036871169478614, 5.96512522636659351344432566769, 6.31653561507417524891879996530, 6.76398526671903995521756419248, 7.27324706375228574405779357587, 7.56768697351250667926202147923, 7.76597902520911339240629675434, 8.295089341788594883270856524188, 8.464676696127892362397824252305, 8.981570027274461453613256891649, 9.631300000662440740279224043059

Graph of the $Z$-function along the critical line