Properties

Label 4-223587-1.1-c1e2-0-8
Degree $4$
Conductor $223587$
Sign $1$
Analytic cond. $14.2561$
Root an. cond. $1.94312$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·4-s + 9-s − 3·12-s + 2·13-s + 5·16-s + 6·25-s − 27-s + 3·36-s − 2·39-s − 8·43-s − 5·48-s + 49-s + 6·52-s + 4·61-s + 3·64-s − 6·75-s + 32·79-s + 81-s + 18·100-s + 16·103-s − 3·108-s + 2·117-s + 6·121-s + 127-s + 8·129-s + 131-s + ⋯
L(s)  = 1  − 0.577·3-s + 3/2·4-s + 1/3·9-s − 0.866·12-s + 0.554·13-s + 5/4·16-s + 6/5·25-s − 0.192·27-s + 1/2·36-s − 0.320·39-s − 1.21·43-s − 0.721·48-s + 1/7·49-s + 0.832·52-s + 0.512·61-s + 3/8·64-s − 0.692·75-s + 3.60·79-s + 1/9·81-s + 9/5·100-s + 1.57·103-s − 0.288·108-s + 0.184·117-s + 6/11·121-s + 0.0887·127-s + 0.704·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 223587 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 223587 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(223587\)    =    \(3^{3} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(14.2561\)
Root analytic conductor: \(1.94312\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 223587,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.208684594\)
\(L(\frac12)\) \(\approx\) \(2.208684594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.037974216704180159543126631909, −8.356175078750261586430624145966, −8.132252088522676141887559266017, −7.27274257516820834559425411006, −7.17760217788793919270753307155, −6.52472878301895647420990933872, −6.26011193460154366739782569927, −5.78110689368608507428910017033, −5.05101314154979794048381255754, −4.71888444449924838616842819054, −3.71600133819353144201904115814, −3.31075497543291353482285565928, −2.50227594714982301545782982287, −1.88185952070879662660487292677, −0.995956301106271632064071395001, 0.995956301106271632064071395001, 1.88185952070879662660487292677, 2.50227594714982301545782982287, 3.31075497543291353482285565928, 3.71600133819353144201904115814, 4.71888444449924838616842819054, 5.05101314154979794048381255754, 5.78110689368608507428910017033, 6.26011193460154366739782569927, 6.52472878301895647420990933872, 7.17760217788793919270753307155, 7.27274257516820834559425411006, 8.132252088522676141887559266017, 8.356175078750261586430624145966, 9.037974216704180159543126631909

Graph of the $Z$-function along the critical line