Properties

Label 4-2205e2-1.1-c3e2-0-4
Degree $4$
Conductor $4862025$
Sign $1$
Analytic cond. $16925.8$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 2·4-s − 10·5-s − 48·8-s − 40·10-s + 32·11-s − 14·13-s − 92·16-s − 20·17-s − 18·19-s + 20·20-s + 128·22-s + 68·23-s + 75·25-s − 56·26-s + 332·29-s − 66·31-s + 176·32-s − 80·34-s + 18·37-s − 72·38-s + 480·40-s + 152·41-s − 842·43-s − 64·44-s + 272·46-s − 212·47-s + ⋯
L(s)  = 1  + 1.41·2-s − 1/4·4-s − 0.894·5-s − 2.12·8-s − 1.26·10-s + 0.877·11-s − 0.298·13-s − 1.43·16-s − 0.285·17-s − 0.217·19-s + 0.223·20-s + 1.24·22-s + 0.616·23-s + 3/5·25-s − 0.422·26-s + 2.12·29-s − 0.382·31-s + 0.972·32-s − 0.403·34-s + 0.0799·37-s − 0.307·38-s + 1.89·40-s + 0.578·41-s − 2.98·43-s − 0.219·44-s + 0.871·46-s − 0.657·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4862025\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(16925.8\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4862025,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.145534242\)
\(L(\frac12)\) \(\approx\) \(4.145534242\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + p T )^{2} \)
7 \( 1 \)
good2$D_{4}$ \( 1 - p^{2} T + 9 p T^{2} - p^{5} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 32 T + 30 T^{2} - 32 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 14 T + 3091 T^{2} + 14 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 20 T + 7614 T^{2} + 20 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 18 T + 5607 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 68 T + 24138 T^{2} - 68 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 332 T + 76262 T^{2} - 332 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 66 T + 58079 T^{2} + 66 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 18 T + 2819 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 152 T + 113850 T^{2} - 152 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 842 T + 333367 T^{2} + 842 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 212 T + 190082 T^{2} + 212 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 368 T + 325338 T^{2} - 368 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 140 T + 346466 T^{2} + 140 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 12 p T + 580718 T^{2} - 12 p^{4} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 1066 T + 760615 T^{2} - 1066 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1208 T + 959606 T^{2} - 1208 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1654 T + 1461763 T^{2} + 1654 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 1134 T + 1305519 T^{2} - 1134 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 968 T + 1357022 T^{2} - 968 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 204 T - 767890 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 1692 T + 1457670 T^{2} + 1692 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.781052083252697870942203654010, −8.488899747297759386636524048036, −8.171165476791081874683935681412, −7.924197571103961926920479739132, −6.96000057651895779915634137190, −6.94806063581074297503010294357, −6.48557207209414213015463526689, −6.18714173843483552707837169480, −5.36573855743470771324310302708, −5.29253254238450557965051992570, −4.69905005860674101046961254479, −4.61174897831623797293764944408, −3.97994519968574217706562767637, −3.77607776944224225483954918130, −3.28140277247313228239710736056, −2.95141515385465787979954701287, −2.31450123245146563695896025582, −1.56571055140768476810301068236, −0.66425619470808299329277508090, −0.51714090529214921571602484295, 0.51714090529214921571602484295, 0.66425619470808299329277508090, 1.56571055140768476810301068236, 2.31450123245146563695896025582, 2.95141515385465787979954701287, 3.28140277247313228239710736056, 3.77607776944224225483954918130, 3.97994519968574217706562767637, 4.61174897831623797293764944408, 4.69905005860674101046961254479, 5.29253254238450557965051992570, 5.36573855743470771324310302708, 6.18714173843483552707837169480, 6.48557207209414213015463526689, 6.94806063581074297503010294357, 6.96000057651895779915634137190, 7.924197571103961926920479739132, 8.171165476791081874683935681412, 8.488899747297759386636524048036, 8.781052083252697870942203654010

Graph of the $Z$-function along the critical line