Properties

Label 4-2205e2-1.1-c3e2-0-11
Degree $4$
Conductor $4862025$
Sign $1$
Analytic cond. $16925.8$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 10·5-s − 9·8-s − 10·10-s + 22·11-s + 22·13-s − 47·16-s + 116·17-s − 102·19-s + 10·20-s − 22·22-s − 260·23-s + 75·25-s − 22·26-s + 196·29-s − 150·31-s + 103·32-s − 116·34-s − 96·37-s + 102·38-s − 90·40-s − 176·41-s − 344·43-s + 22·44-s + 260·46-s + 560·47-s + ⋯
L(s)  = 1  − 0.353·2-s + 1/8·4-s + 0.894·5-s − 0.397·8-s − 0.316·10-s + 0.603·11-s + 0.469·13-s − 0.734·16-s + 1.65·17-s − 1.23·19-s + 0.111·20-s − 0.213·22-s − 2.35·23-s + 3/5·25-s − 0.165·26-s + 1.25·29-s − 0.869·31-s + 0.568·32-s − 0.585·34-s − 0.426·37-s + 0.435·38-s − 0.355·40-s − 0.670·41-s − 1.21·43-s + 0.0753·44-s + 0.833·46-s + 1.73·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4862025\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(16925.8\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 4862025,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - p T )^{2} \)
7 \( 1 \)
good2$D_{4}$ \( 1 + T + p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 2 p T + 2718 T^{2} - 2 p^{4} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 22 T + 4450 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 116 T + 9030 T^{2} - 116 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 102 T + 13134 T^{2} + 102 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 260 T + 34734 T^{2} + 260 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 196 T + 20942 T^{2} - 196 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 150 T + 36542 T^{2} + 150 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 96 T + 82550 T^{2} + 96 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 176 T - 16914 T^{2} + 176 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 8 p T + 171958 T^{2} + 8 p^{4} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 560 T + 248606 T^{2} - 560 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 326 T + 204138 T^{2} + 326 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 844 T + 474182 T^{2} + 844 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 204 T + 455006 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 104 T + 537670 T^{2} + 104 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 1670 T + 1384382 T^{2} + 1670 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 386 T + 152218 T^{2} - 386 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 888 T + 1007454 T^{2} + 888 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 928 T + 600710 T^{2} - 928 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 588 T + 1495334 T^{2} - 588 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 522 T + 291282 T^{2} + 522 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.417399175437126460832182906878, −8.303051664168433483619884952271, −7.79367836251768885556992224732, −7.41075753999081805837649244010, −6.86169047475777195792345700455, −6.37518980802705233626552324238, −6.23158719810207553787429696299, −5.97264994613631742559995850922, −5.29522120612836792063810024495, −5.13052200273767844145512290324, −4.19960624411151701113767831248, −4.19128463776645862515108061213, −3.57217315147426543463037173250, −2.95031481132222464788993924340, −2.58473619934838414296704277849, −1.91716945934200517257247153403, −1.54223710888771067470345598373, −1.13811492539434948809810250831, 0, 0, 1.13811492539434948809810250831, 1.54223710888771067470345598373, 1.91716945934200517257247153403, 2.58473619934838414296704277849, 2.95031481132222464788993924340, 3.57217315147426543463037173250, 4.19128463776645862515108061213, 4.19960624411151701113767831248, 5.13052200273767844145512290324, 5.29522120612836792063810024495, 5.97264994613631742559995850922, 6.23158719810207553787429696299, 6.37518980802705233626552324238, 6.86169047475777195792345700455, 7.41075753999081805837649244010, 7.79367836251768885556992224732, 8.303051664168433483619884952271, 8.417399175437126460832182906878

Graph of the $Z$-function along the critical line