Properties

Label 4-2205e2-1.1-c0e2-0-7
Degree $4$
Conductor $4862025$
Sign $1$
Analytic cond. $1.21096$
Root an. cond. $1.04901$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 2·5-s − 12-s + 3·13-s − 2·15-s − 17-s + 2·20-s + 3·25-s + 27-s − 3·39-s − 47-s + 51-s + 3·52-s − 2·60-s − 64-s + 6·65-s − 68-s − 3·73-s − 3·75-s − 79-s − 81-s − 83-s − 2·85-s − 3·97-s + 3·100-s + 108-s + ⋯
L(s)  = 1  − 3-s + 4-s + 2·5-s − 12-s + 3·13-s − 2·15-s − 17-s + 2·20-s + 3·25-s + 27-s − 3·39-s − 47-s + 51-s + 3·52-s − 2·60-s − 64-s + 6·65-s − 68-s − 3·73-s − 3·75-s − 79-s − 81-s − 83-s − 2·85-s − 3·97-s + 3·100-s + 108-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4862025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4862025\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.21096\)
Root analytic conductor: \(1.04901\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4862025,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.907371093\)
\(L(\frac12)\) \(\approx\) \(1.907371093\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
19$C_2^2$ \( 1 - T^{2} + T^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2^2$ \( 1 - T^{2} + T^{4} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2^2$ \( 1 - T^{2} + T^{4} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
83$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.187286126930038455213650910060, −9.179291040763371791126752603730, −8.775422706104966744135415091549, −8.246689150730527971556058386911, −8.161810151030676458203986576107, −7.08843877231934599915486727115, −6.82891119589023998683851487640, −6.70782461752361003388159657240, −6.17050651741043198359451326295, −5.89895402691265616349141089682, −5.75066415523741377470466000794, −5.41827720841477317523960941954, −4.56619330363123953541590790927, −4.44865694576175685041412409581, −3.63234749344303478632032259890, −2.94312829310744692393409048619, −2.78930609763453276351320689692, −1.95545074615478379152446187518, −1.53415641740609884891509966318, −1.17557768724919395806095352179, 1.17557768724919395806095352179, 1.53415641740609884891509966318, 1.95545074615478379152446187518, 2.78930609763453276351320689692, 2.94312829310744692393409048619, 3.63234749344303478632032259890, 4.44865694576175685041412409581, 4.56619330363123953541590790927, 5.41827720841477317523960941954, 5.75066415523741377470466000794, 5.89895402691265616349141089682, 6.17050651741043198359451326295, 6.70782461752361003388159657240, 6.82891119589023998683851487640, 7.08843877231934599915486727115, 8.161810151030676458203986576107, 8.246689150730527971556058386911, 8.775422706104966744135415091549, 9.179291040763371791126752603730, 9.187286126930038455213650910060

Graph of the $Z$-function along the critical line