| L(s) = 1 | + 2·2-s + 3·4-s − 5-s + 2·7-s + 4·8-s + 3·9-s − 2·10-s − 13-s + 4·14-s + 5·16-s + 6·18-s − 3·20-s − 4·25-s − 2·26-s + 6·28-s + 4·29-s + 6·32-s − 2·35-s + 9·36-s + 6·37-s − 4·40-s − 3·45-s + 26·47-s − 11·49-s − 8·50-s − 3·52-s + 8·56-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s − 0.447·5-s + 0.755·7-s + 1.41·8-s + 9-s − 0.632·10-s − 0.277·13-s + 1.06·14-s + 5/4·16-s + 1.41·18-s − 0.670·20-s − 4/5·25-s − 0.392·26-s + 1.13·28-s + 0.742·29-s + 1.06·32-s − 0.338·35-s + 3/2·36-s + 0.986·37-s − 0.632·40-s − 0.447·45-s + 3.79·47-s − 1.57·49-s − 1.13·50-s − 0.416·52-s + 1.06·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 219700 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 219700 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.687099046\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.687099046\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.026911386413610630551375476230, −8.420872023290300609672133626170, −7.78618160341898961599148312743, −7.45985560667588965978165906144, −7.23568791400333437059684221061, −6.51632105010820945514209338703, −5.88908450915949561478136129218, −5.69499349255850374306805786509, −4.65916643268043458244706899373, −4.61153453491182141362175201622, −4.15748343893950010861474305754, −3.45971551695615743734182930904, −2.76910930427420910776332481273, −2.04502161572044176240278653055, −1.23311319217689188134168770571,
1.23311319217689188134168770571, 2.04502161572044176240278653055, 2.76910930427420910776332481273, 3.45971551695615743734182930904, 4.15748343893950010861474305754, 4.61153453491182141362175201622, 4.65916643268043458244706899373, 5.69499349255850374306805786509, 5.88908450915949561478136129218, 6.51632105010820945514209338703, 7.23568791400333437059684221061, 7.45985560667588965978165906144, 7.78618160341898961599148312743, 8.420872023290300609672133626170, 9.026911386413610630551375476230