Properties

Label 4-2166e2-1.1-c3e2-0-5
Degree $4$
Conductor $4691556$
Sign $1$
Analytic cond. $16332.3$
Root an. cond. $11.3047$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 6·3-s + 12·4-s − 15·5-s − 24·6-s + 9·7-s − 32·8-s + 27·9-s + 60·10-s − 9·11-s + 72·12-s + 48·13-s − 36·14-s − 90·15-s + 80·16-s + 111·17-s − 108·18-s − 180·20-s + 54·21-s + 36·22-s − 138·23-s − 192·24-s − 3·25-s − 192·26-s + 108·27-s + 108·28-s − 390·29-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 3/2·4-s − 1.34·5-s − 1.63·6-s + 0.485·7-s − 1.41·8-s + 9-s + 1.89·10-s − 0.246·11-s + 1.73·12-s + 1.02·13-s − 0.687·14-s − 1.54·15-s + 5/4·16-s + 1.58·17-s − 1.41·18-s − 2.01·20-s + 0.561·21-s + 0.348·22-s − 1.25·23-s − 1.63·24-s − 0.0239·25-s − 1.44·26-s + 0.769·27-s + 0.728·28-s − 2.49·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4691556 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4691556 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4691556\)    =    \(2^{2} \cdot 3^{2} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(16332.3\)
Root analytic conductor: \(11.3047\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 4691556,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
3$C_1$ \( ( 1 - p T )^{2} \)
19 \( 1 \)
good5$D_{4}$ \( 1 + 3 p T + 228 T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 9 T + 2 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 9 T + 2604 T^{2} + 9 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 24 T + p^{3} T^{2} )^{2} \)
17$D_{4}$ \( 1 - 111 T + 9072 T^{2} - 111 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 6 p T + 21270 T^{2} + 6 p^{4} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 390 T + 83986 T^{2} + 390 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 192 T + 23726 T^{2} - 192 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 84 T + p^{3} T^{2} )^{2} \)
41$D_{4}$ \( 1 + 198 T + 144826 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 167 T + 7530 T^{2} + 167 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 93 T + 65124 T^{2} - 93 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 162 T + 233890 T^{2} - 162 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 108 T + 131974 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 213 T + 306848 T^{2} - 213 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 204 T + 510518 T^{2} + 204 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1752 T + 1438126 T^{2} - 1752 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1417 T + 1273668 T^{2} + 1417 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 1092 T + 732062 T^{2} + 1092 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 270 T + 733302 T^{2} + 270 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 606 T + 1025674 T^{2} + 606 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 612 T + 1366850 T^{2} - 612 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.406050298170214614428854105502, −8.316026923950485432714553139742, −7.78654091329289451347573238852, −7.60669638773358294684183115971, −7.27219021523867544038231941295, −7.02943810426142439340601831838, −6.13543732703752158715179978675, −6.01992048008703750708963931976, −5.42796834445526076215166904239, −4.90144481820543894442052043424, −4.15769524906256650324045840471, −3.82900181217596025825763248838, −3.39700238435379621858916279861, −3.29810630509676954485769148805, −2.31719116656515802079999682254, −2.09856282336838448588887092061, −1.26404026588686273557587599389, −1.19306389200072773520898345287, 0, 0, 1.19306389200072773520898345287, 1.26404026588686273557587599389, 2.09856282336838448588887092061, 2.31719116656515802079999682254, 3.29810630509676954485769148805, 3.39700238435379621858916279861, 3.82900181217596025825763248838, 4.15769524906256650324045840471, 4.90144481820543894442052043424, 5.42796834445526076215166904239, 6.01992048008703750708963931976, 6.13543732703752158715179978675, 7.02943810426142439340601831838, 7.27219021523867544038231941295, 7.60669638773358294684183115971, 7.78654091329289451347573238852, 8.316026923950485432714553139742, 8.406050298170214614428854105502

Graph of the $Z$-function along the critical line