| L(s) = 1 | + 3·3-s − 6·5-s − 2·7-s + 4·9-s + 5·11-s − 4·13-s − 18·15-s − 7·17-s − 2·19-s − 6·21-s + 6·23-s + 17·25-s + 6·27-s + 9·29-s + 31-s + 15·33-s + 12·35-s − 12·39-s + 5·41-s + 20·43-s − 24·45-s + 2·47-s + 3·49-s − 21·51-s − 3·53-s − 30·55-s − 6·57-s + ⋯ |
| L(s) = 1 | + 1.73·3-s − 2.68·5-s − 0.755·7-s + 4/3·9-s + 1.50·11-s − 1.10·13-s − 4.64·15-s − 1.69·17-s − 0.458·19-s − 1.30·21-s + 1.25·23-s + 17/5·25-s + 1.15·27-s + 1.67·29-s + 0.179·31-s + 2.61·33-s + 2.02·35-s − 1.92·39-s + 0.780·41-s + 3.04·43-s − 3.57·45-s + 0.291·47-s + 3/7·49-s − 2.94·51-s − 0.412·53-s − 4.04·55-s − 0.794·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4528384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4528384 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.767892896\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.767892896\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.948756209383605109634339802010, −8.821635425386084083499481360521, −8.576998100754058763523674692105, −8.340133643344082538301705693562, −7.51225691220439603161741445514, −7.49968203350902236162168157837, −7.22275788613926267219417996487, −6.85339261656809563553101462154, −6.23087666245792337841675139062, −6.03830756518747768235414161385, −4.82210746950053998768951198540, −4.47920545596665986957975278263, −4.37733556261980518585125553592, −3.96725132978524647916360178561, −3.39117833565790232960046750912, −3.18334415725561606049348262470, −2.46347910014738945302711450530, −2.45551029367568891214370980542, −1.14539692070843187193209485835, −0.47210294374268222490726203201,
0.47210294374268222490726203201, 1.14539692070843187193209485835, 2.45551029367568891214370980542, 2.46347910014738945302711450530, 3.18334415725561606049348262470, 3.39117833565790232960046750912, 3.96725132978524647916360178561, 4.37733556261980518585125553592, 4.47920545596665986957975278263, 4.82210746950053998768951198540, 6.03830756518747768235414161385, 6.23087666245792337841675139062, 6.85339261656809563553101462154, 7.22275788613926267219417996487, 7.49968203350902236162168157837, 7.51225691220439603161741445514, 8.340133643344082538301705693562, 8.576998100754058763523674692105, 8.821635425386084083499481360521, 8.948756209383605109634339802010