Properties

Label 4-2112e2-1.1-c3e2-0-7
Degree $4$
Conductor $4460544$
Sign $1$
Analytic cond. $15528.1$
Root an. cond. $11.1629$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 14·5-s + 24·7-s + 27·9-s + 22·11-s − 30·13-s + 84·15-s + 106·17-s − 50·19-s + 144·21-s + 134·23-s − 6·25-s + 108·27-s + 198·29-s + 360·31-s + 132·33-s + 336·35-s + 328·37-s − 180·39-s − 782·41-s − 386·43-s + 378·45-s + 266·47-s + 134·49-s + 636·51-s + 522·53-s + 308·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.25·5-s + 1.29·7-s + 9-s + 0.603·11-s − 0.640·13-s + 1.44·15-s + 1.51·17-s − 0.603·19-s + 1.49·21-s + 1.21·23-s − 0.0479·25-s + 0.769·27-s + 1.26·29-s + 2.08·31-s + 0.696·33-s + 1.62·35-s + 1.45·37-s − 0.739·39-s − 2.97·41-s − 1.36·43-s + 1.25·45-s + 0.825·47-s + 0.390·49-s + 1.74·51-s + 1.35·53-s + 0.755·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4460544\)    =    \(2^{12} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(15528.1\)
Root analytic conductor: \(11.1629\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4460544,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(15.30779510\)
\(L(\frac12)\) \(\approx\) \(15.30779510\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
11$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 - 14 T + 202 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 24 T + 442 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 30 T + 4522 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 106 T + 7882 T^{2} - 106 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 50 T + 14246 T^{2} + 50 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 134 T + 26398 T^{2} - 134 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 198 T + 57706 T^{2} - 198 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 360 T + 90430 T^{2} - 360 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 328 T + 62630 T^{2} - 328 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 782 T + 285970 T^{2} + 782 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 386 T + 179870 T^{2} + 386 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 266 T + 92542 T^{2} - 266 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 522 T + 295162 T^{2} - 522 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 172 T + 175654 T^{2} - 172 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 778 T + 577250 T^{2} - 778 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 776 T + 528582 T^{2} - 776 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 630 T + 744334 T^{2} - 630 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 1296 T + 1178926 T^{2} - 1296 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 652 T + 589506 T^{2} - 652 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 324 T + 579670 T^{2} - 324 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 756 T + 1427110 T^{2} + 756 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 452 T + 982470 T^{2} + 452 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.787955554506152727636082600035, −8.428346976062768568731586602970, −8.201963627379616903073662656232, −8.082097318491430734046675887409, −7.49450151294612808525368414133, −6.87952869355335966258869322050, −6.59675867310218615932553151803, −6.48304156547927639540138723287, −5.56423545475154584205547581036, −5.34743954098622529655955247845, −4.83079578352825448372598961068, −4.72269288796831815158821058234, −3.84597992247146639688262332561, −3.69297012146595018938153208593, −2.85513510235764174783428250135, −2.63627321239657181102106115026, −2.03817420668938760587264969674, −1.73398884360358607943324961714, −0.965698286353920623451203490342, −0.880693359903389549638154132700, 0.880693359903389549638154132700, 0.965698286353920623451203490342, 1.73398884360358607943324961714, 2.03817420668938760587264969674, 2.63627321239657181102106115026, 2.85513510235764174783428250135, 3.69297012146595018938153208593, 3.84597992247146639688262332561, 4.72269288796831815158821058234, 4.83079578352825448372598961068, 5.34743954098622529655955247845, 5.56423545475154584205547581036, 6.48304156547927639540138723287, 6.59675867310218615932553151803, 6.87952869355335966258869322050, 7.49450151294612808525368414133, 8.082097318491430734046675887409, 8.201963627379616903073662656232, 8.428346976062768568731586602970, 8.787955554506152727636082600035

Graph of the $Z$-function along the critical line