Properties

Label 4-2112e2-1.1-c3e2-0-2
Degree $4$
Conductor $4460544$
Sign $1$
Analytic cond. $15528.1$
Root an. cond. $11.1629$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 6·5-s − 10·7-s + 27·9-s + 22·11-s + 2·13-s − 36·15-s − 104·17-s + 4·19-s + 60·21-s + 102·23-s − 206·25-s − 108·27-s + 392·29-s + 64·31-s − 132·33-s − 60·35-s + 164·37-s − 12·39-s − 732·41-s + 168·43-s + 162·45-s + 314·47-s − 594·49-s + 624·51-s + 382·53-s + 132·55-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.536·5-s − 0.539·7-s + 9-s + 0.603·11-s + 0.0426·13-s − 0.619·15-s − 1.48·17-s + 0.0482·19-s + 0.623·21-s + 0.924·23-s − 1.64·25-s − 0.769·27-s + 2.51·29-s + 0.370·31-s − 0.696·33-s − 0.289·35-s + 0.728·37-s − 0.0492·39-s − 2.78·41-s + 0.595·43-s + 0.536·45-s + 0.974·47-s − 1.73·49-s + 1.71·51-s + 0.990·53-s + 0.323·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4460544\)    =    \(2^{12} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(15528.1\)
Root analytic conductor: \(11.1629\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4460544,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.977147018\)
\(L(\frac12)\) \(\approx\) \(1.977147018\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p T )^{2} \)
11$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 - 6 T + 242 T^{2} - 6 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 10 T + 694 T^{2} + 10 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 2 T - 518 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 104 T + 7022 T^{2} + 104 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 4 T - 1578 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 102 T + 24062 T^{2} - 102 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 392 T + 75702 T^{2} - 392 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 64 T + 33406 T^{2} - 64 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 164 T - 770 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 732 T + 264998 T^{2} + 732 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 168 T + 2034 p T^{2} - 168 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 314 T + 4210 p T^{2} - 314 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 382 T + 310962 T^{2} - 382 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 508 T + 418086 T^{2} - 508 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 6 T + 66354 T^{2} - 6 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 216 T + 298758 T^{2} - 216 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 878 T + 841070 T^{2} - 878 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 260 T - 58058 T^{2} - 260 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 118 T + 829606 T^{2} + 118 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 496 T + 441030 T^{2} - 496 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1756 T + 1701014 T^{2} + 1756 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 1968 T + 2769054 T^{2} - 1968 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.021454127616533426357175363647, −8.554681444071089149567639542475, −8.149850296927034707385892733536, −7.894018919936131613829808631499, −6.92937398770585090619961134049, −6.91979985338095484621837850440, −6.51036132277370825999220237496, −6.42234226331580791995352119290, −5.69764915832630193551818137380, −5.52086896829320401916140847523, −4.87827274909746187991101905205, −4.66134121060462046454581958654, −4.10471962081641807545220563195, −3.75241912374555422187080648040, −3.06915114451687480472766461542, −2.56823710672459861207511344822, −1.98654270593494991972017557650, −1.50264529427403396940887726389, −0.77192268720630464833456094757, −0.41862038056931748637911620521, 0.41862038056931748637911620521, 0.77192268720630464833456094757, 1.50264529427403396940887726389, 1.98654270593494991972017557650, 2.56823710672459861207511344822, 3.06915114451687480472766461542, 3.75241912374555422187080648040, 4.10471962081641807545220563195, 4.66134121060462046454581958654, 4.87827274909746187991101905205, 5.52086896829320401916140847523, 5.69764915832630193551818137380, 6.42234226331580791995352119290, 6.51036132277370825999220237496, 6.91979985338095484621837850440, 6.92937398770585090619961134049, 7.894018919936131613829808631499, 8.149850296927034707385892733536, 8.554681444071089149567639542475, 9.021454127616533426357175363647

Graph of the $Z$-function along the critical line