Properties

Label 4-2112e2-1.1-c3e2-0-12
Degree $4$
Conductor $4460544$
Sign $1$
Analytic cond. $15528.1$
Root an. cond. $11.1629$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 6·5-s + 16·7-s + 27·9-s + 22·11-s + 14·13-s − 36·15-s − 98·17-s − 118·19-s + 96·21-s − 6·23-s − 150·25-s + 108·27-s + 250·29-s − 88·31-s + 132·33-s − 96·35-s − 160·37-s + 84·39-s − 266·41-s − 78·43-s − 162·45-s − 250·47-s − 202·49-s − 588·51-s + 254·53-s − 132·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.536·5-s + 0.863·7-s + 9-s + 0.603·11-s + 0.298·13-s − 0.619·15-s − 1.39·17-s − 1.42·19-s + 0.997·21-s − 0.0543·23-s − 6/5·25-s + 0.769·27-s + 1.60·29-s − 0.509·31-s + 0.696·33-s − 0.463·35-s − 0.710·37-s + 0.344·39-s − 1.01·41-s − 0.276·43-s − 0.536·45-s − 0.775·47-s − 0.588·49-s − 1.61·51-s + 0.658·53-s − 0.323·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4460544\)    =    \(2^{12} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(15528.1\)
Root analytic conductor: \(11.1629\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 4460544,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
11$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 + 6 T + 186 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 16 T + 458 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 14 T + 4370 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 98 T + 10402 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 118 T + 13622 T^{2} + 118 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 7918 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 250 T + 58490 T^{2} - 250 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 88 T + 56846 T^{2} + 88 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 160 T + 58358 T^{2} + 160 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 266 T + 123338 T^{2} + 266 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 78 T + 154622 T^{2} + 78 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 250 T + 219694 T^{2} + 250 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 254 T + 312058 T^{2} - 254 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 388 T + 342982 T^{2} + 388 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 74 T + 455258 T^{2} + 74 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 8 p T + 598598 T^{2} + 8 p^{4} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 22 T + 715870 T^{2} + 22 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 952 T + 969278 T^{2} + 952 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 524 T + 1050050 T^{2} - 524 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1388 T + 1267510 T^{2} + 1388 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 380 T + 1277846 T^{2} + 380 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 916 T + 684902 T^{2} + 916 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.578918921187662510757663872133, −8.401177246316200551093942376088, −7.75954578960296039916753556553, −7.58507251872749159527064127246, −7.01810260816951107254155231096, −6.72366628716747047563743397568, −6.16796459434775418686970097259, −6.05745741482115483259563458106, −5.10644229465978132471663107696, −4.78270184363546641761663468600, −4.31325030163663906377447377317, −4.18383240167138708725222576512, −3.49549345924467952682366349013, −3.28570000052112846236792036717, −2.37042133764654825432198563437, −2.27550858628680322567751381844, −1.44214271329740305476364005552, −1.39129870129452046420645533996, 0, 0, 1.39129870129452046420645533996, 1.44214271329740305476364005552, 2.27550858628680322567751381844, 2.37042133764654825432198563437, 3.28570000052112846236792036717, 3.49549345924467952682366349013, 4.18383240167138708725222576512, 4.31325030163663906377447377317, 4.78270184363546641761663468600, 5.10644229465978132471663107696, 6.05745741482115483259563458106, 6.16796459434775418686970097259, 6.72366628716747047563743397568, 7.01810260816951107254155231096, 7.58507251872749159527064127246, 7.75954578960296039916753556553, 8.401177246316200551093942376088, 8.578918921187662510757663872133

Graph of the $Z$-function along the critical line