Properties

Label 4-2112e2-1.1-c3e2-0-10
Degree $4$
Conductor $4460544$
Sign $1$
Analytic cond. $15528.1$
Root an. cond. $11.1629$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 16·5-s − 2·7-s + 27·9-s + 22·11-s + 76·13-s − 96·15-s − 26·17-s − 54·19-s − 12·21-s − 224·23-s + 74·25-s + 108·27-s − 222·29-s + 40·31-s + 132·33-s + 32·35-s + 48·37-s + 456·39-s − 494·41-s − 66·43-s − 432·45-s + 64·47-s − 650·49-s − 156·51-s + 84·53-s − 352·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.43·5-s − 0.107·7-s + 9-s + 0.603·11-s + 1.62·13-s − 1.65·15-s − 0.370·17-s − 0.652·19-s − 0.124·21-s − 2.03·23-s + 0.591·25-s + 0.769·27-s − 1.42·29-s + 0.231·31-s + 0.696·33-s + 0.154·35-s + 0.213·37-s + 1.87·39-s − 1.88·41-s − 0.234·43-s − 1.43·45-s + 0.198·47-s − 1.89·49-s − 0.428·51-s + 0.217·53-s − 0.862·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4460544 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4460544\)    =    \(2^{12} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(15528.1\)
Root analytic conductor: \(11.1629\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 4460544,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
11$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 + 16 T + 182 T^{2} + 16 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 2 T + 654 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 76 T + 5310 T^{2} - 76 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 26 T + 2570 T^{2} + 26 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 54 T + 11774 T^{2} + 54 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2$ \( ( 1 + 112 T + p^{3} T^{2} )^{2} \)
29$D_{4}$ \( 1 + 222 T + 43642 T^{2} + 222 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 40 T - 29250 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 48 T + 85910 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 494 T + 198818 T^{2} + 494 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 66 T + 99086 T^{2} + 66 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 64 T + 189662 T^{2} - 64 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 84 T + 164350 T^{2} - 84 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 196 T + p^{3} T^{2} )^{2} \)
61$D_{4}$ \( 1 - 1104 T + 736358 T^{2} - 1104 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 928 T + 626214 T^{2} - 928 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 456 T + 488494 T^{2} + 456 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 592 T + 341742 T^{2} + 592 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 230 T + 954126 T^{2} - 230 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 348 T + 307798 T^{2} - 348 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 972 T + 1645606 T^{2} - 972 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 1184 T + 720510 T^{2} + 1184 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.384280262670763219746957158932, −8.238208099336481141984528942386, −7.88439196372023881085358956567, −7.67509309937141321520949079845, −6.89932749371436385573720448077, −6.75740678418814701478339596757, −6.34105099453292158161128930426, −5.89911105569441259147235842605, −5.27583421442047578260190467697, −4.80691811426195909953929245871, −4.03600281527781349999094366507, −3.97939056689211144335580986076, −3.56577190477469546446748326182, −3.54223304179737283703256559917, −2.56248383613066856878314339923, −2.15913021848960410493420500287, −1.55993635840571716213850237625, −1.11653681853322344358932393284, 0, 0, 1.11653681853322344358932393284, 1.55993635840571716213850237625, 2.15913021848960410493420500287, 2.56248383613066856878314339923, 3.54223304179737283703256559917, 3.56577190477469546446748326182, 3.97939056689211144335580986076, 4.03600281527781349999094366507, 4.80691811426195909953929245871, 5.27583421442047578260190467697, 5.89911105569441259147235842605, 6.34105099453292158161128930426, 6.75740678418814701478339596757, 6.89932749371436385573720448077, 7.67509309937141321520949079845, 7.88439196372023881085358956567, 8.238208099336481141984528942386, 8.384280262670763219746957158932

Graph of the $Z$-function along the critical line