Properties

Label 4-20e4-1.1-c2e2-0-7
Degree $4$
Conductor $160000$
Sign $1$
Analytic cond. $118.792$
Root an. cond. $3.30139$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 14·7-s + 2·9-s + 8·11-s + 24·13-s + 40·17-s + 28·21-s − 18·23-s − 18·27-s + 80·31-s − 16·33-s − 32·37-s − 48·39-s + 64·41-s − 14·43-s + 62·47-s + 98·49-s − 80·51-s − 104·53-s − 28·63-s + 162·67-s + 36·69-s + 224·71-s + 88·73-s − 112·77-s − 13·81-s + 98·83-s + ⋯
L(s)  = 1  − 2/3·3-s − 2·7-s + 2/9·9-s + 8/11·11-s + 1.84·13-s + 2.35·17-s + 4/3·21-s − 0.782·23-s − 2/3·27-s + 2.58·31-s − 0.484·33-s − 0.864·37-s − 1.23·39-s + 1.56·41-s − 0.325·43-s + 1.31·47-s + 2·49-s − 1.56·51-s − 1.96·53-s − 4/9·63-s + 2.41·67-s + 0.521·69-s + 3.15·71-s + 1.20·73-s − 1.45·77-s − 0.160·81-s + 1.18·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160000\)    =    \(2^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(118.792\)
Root analytic conductor: \(3.30139\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 160000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.709274177\)
\(L(\frac12)\) \(\approx\) \(1.709274177\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} \)
7$C_1$$\times$$C_2$ \( ( 1 + p T )^{2}( 1 + p^{2} T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 40 T + 800 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 + 62 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 + 18 T + 162 T^{2} + 18 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 526 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 40 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 32 T + 512 T^{2} + 32 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 62 T + 1922 T^{2} - 62 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 104 T + 5408 T^{2} + 104 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 5026 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 162 T + 13122 T^{2} - 162 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 112 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 88 T + 3872 T^{2} - 88 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 7298 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 98 T + 4802 T^{2} - 98 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 6238 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 88 T + 3872 T^{2} + 88 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21094356727767450999692234476, −10.81321270682472866927281974235, −10.41734914639437599321239868327, −9.722647143018227551827668992716, −9.580968173140962867665442901502, −9.391009028096546532885750496139, −8.280399796158393332053717499658, −8.239756642958642793733252900251, −7.59730763785553977297669688816, −6.69815938826210976497182460054, −6.42641935955634355910478692769, −6.26516763356391759809440579277, −5.59373849794804794283202668866, −5.24942327993844182806268054465, −4.07272256239174100808766529754, −3.75367125609998734303212785279, −3.33696487171546773939041879927, −2.58493787539929145083893494346, −1.23858427635752238422204537063, −0.70329762459793806379514394512, 0.70329762459793806379514394512, 1.23858427635752238422204537063, 2.58493787539929145083893494346, 3.33696487171546773939041879927, 3.75367125609998734303212785279, 4.07272256239174100808766529754, 5.24942327993844182806268054465, 5.59373849794804794283202668866, 6.26516763356391759809440579277, 6.42641935955634355910478692769, 6.69815938826210976497182460054, 7.59730763785553977297669688816, 8.239756642958642793733252900251, 8.280399796158393332053717499658, 9.391009028096546532885750496139, 9.580968173140962867665442901502, 9.722647143018227551827668992716, 10.41734914639437599321239868327, 10.81321270682472866927281974235, 11.21094356727767450999692234476

Graph of the $Z$-function along the critical line