Properties

Label 4-20e4-1.1-c2e2-0-0
Degree $4$
Conductor $160000$
Sign $1$
Analytic cond. $118.792$
Root an. cond. $3.30139$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 6·7-s + 18·9-s − 24·11-s − 24·13-s + 24·17-s − 36·21-s − 6·23-s − 54·27-s + 16·31-s + 144·33-s − 96·37-s + 144·39-s − 96·41-s + 54·43-s − 54·47-s + 18·49-s − 144·51-s − 24·53-s + 64·61-s + 108·63-s + 6·67-s + 36·69-s + 96·71-s − 24·73-s − 144·77-s + 243·81-s + ⋯
L(s)  = 1  − 2·3-s + 6/7·7-s + 2·9-s − 2.18·11-s − 1.84·13-s + 1.41·17-s − 1.71·21-s − 0.260·23-s − 2·27-s + 0.516·31-s + 4.36·33-s − 2.59·37-s + 3.69·39-s − 2.34·41-s + 1.25·43-s − 1.14·47-s + 0.367·49-s − 2.82·51-s − 0.452·53-s + 1.04·61-s + 12/7·63-s + 6/67·67-s + 0.521·69-s + 1.35·71-s − 0.328·73-s − 1.87·77-s + 3·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160000\)    =    \(2^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(118.792\)
Root analytic conductor: \(3.30139\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 160000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.005731264611\)
\(L(\frac12)\) \(\approx\) \(0.005731264611\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_1$$\times$$C_2$ \( ( 1 + p T )^{2}( 1 + p^{2} T^{2} ) \)
7$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 + 12 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 322 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 782 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 96 T + 4608 T^{2} + 96 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 + 48 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 54 T + 1458 T^{2} - 54 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 + 54 T + 1458 T^{2} + 54 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 3362 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 48 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 10882 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 + 186 T + 17298 T^{2} + 186 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 14942 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.62142622361110683964806927791, −10.66954490905987829071683939586, −10.53863784305595026601911289852, −10.07728979633254194466892040913, −9.890973262221863511903444818723, −9.142369465324382375503828472157, −8.162287671038947030996512546941, −8.010771623259069212493028474325, −7.60398465311913779668310134852, −6.85063052334381933426249970897, −6.73298509886092704353022166965, −5.53399983855826140076185399419, −5.52132821086858525552392891958, −5.05508906680154453918389401408, −4.96124048103725630652438136674, −3.99532403397664104925185186807, −3.05468756678898112400383089991, −2.30047464617709442875287968907, −1.43532873878352851012003742086, −0.03758768381088179741434813751, 0.03758768381088179741434813751, 1.43532873878352851012003742086, 2.30047464617709442875287968907, 3.05468756678898112400383089991, 3.99532403397664104925185186807, 4.96124048103725630652438136674, 5.05508906680154453918389401408, 5.52132821086858525552392891958, 5.53399983855826140076185399419, 6.73298509886092704353022166965, 6.85063052334381933426249970897, 7.60398465311913779668310134852, 8.010771623259069212493028474325, 8.162287671038947030996512546941, 9.142369465324382375503828472157, 9.890973262221863511903444818723, 10.07728979633254194466892040913, 10.53863784305595026601911289852, 10.66954490905987829071683939586, 11.62142622361110683964806927791

Graph of the $Z$-function along the critical line