Properties

Label 4-20e2-1.1-c21e2-0-0
Degree $4$
Conductor $400$
Sign $1$
Analytic cond. $3124.30$
Root an. cond. $7.47632$
Motivic weight $21$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.04e3·2-s + 2.09e6·4-s + 4.15e7·5-s + 8.51e10·10-s − 1.18e12·13-s − 4.39e12·16-s + 2.20e13·17-s + 8.71e13·20-s + 1.25e15·25-s − 2.42e15·26-s − 9.00e15·32-s + 4.51e16·34-s + 7.41e16·37-s − 3.43e17·41-s + 2.56e18·50-s − 2.48e18·52-s + 1.22e18·53-s − 9.74e18·61-s − 9.22e18·64-s − 4.92e19·65-s + 4.62e19·68-s − 9.28e19·73-s + 1.51e20·74-s − 1.82e20·80-s − 1.09e20·81-s − 7.03e20·82-s + 9.16e20·85-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.90·5-s + 2.69·10-s − 2.38·13-s − 16-s + 2.65·17-s + 1.90·20-s + 2.62·25-s − 3.37·26-s − 1.41·32-s + 3.75·34-s + 2.53·37-s − 3.99·41-s + 3.71·50-s − 2.38·52-s + 0.960·53-s − 1.74·61-s − 64-s − 4.54·65-s + 2.65·68-s − 2.52·73-s + 3.58·74-s − 1.90·80-s − 81-s − 5.65·82-s + 5.05·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+21/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(3124.30\)
Root analytic conductor: \(7.47632\)
Motivic weight: \(21\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 400,\ (\ :21/2, 21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(8.764638911\)
\(L(\frac12)\) \(\approx\) \(8.764638911\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{11} T + p^{21} T^{2} \)
5$C_2$ \( 1 - 41567116 T + p^{21} T^{2} \)
good3$C_2^2$ \( 1 + p^{42} T^{4} \)
7$C_2^2$ \( 1 + p^{42} T^{4} \)
11$C_2$ \( ( 1 - p^{21} T^{2} )^{2} \)
13$C_2$ \( ( 1 + 215310526796 T + p^{21} T^{2} )( 1 + 970515066006 T + p^{21} T^{2} ) \)
17$C_2$ \( ( 1 - 15095904884798 T + p^{21} T^{2} )( 1 - 6962857988008 T + p^{21} T^{2} ) \)
19$C_2$ \( ( 1 + p^{21} T^{2} )^{2} \)
23$C_2^2$ \( 1 + p^{42} T^{4} \)
29$C_2$ \( ( 1 - 617267444622790 T + p^{21} T^{2} )( 1 + 617267444622790 T + p^{21} T^{2} ) \)
31$C_2$ \( ( 1 - p^{21} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 55407939890055588 T + p^{21} T^{2} )( 1 - 18764002233154798 T + p^{21} T^{2} ) \)
41$C_2$ \( ( 1 + 171803734370535208 T + p^{21} T^{2} )^{2} \)
43$C_2^2$ \( 1 + p^{42} T^{4} \)
47$C_2^2$ \( 1 + p^{42} T^{4} \)
53$C_2$ \( ( 1 - 2305059469250980414 T + p^{21} T^{2} )( 1 + 1082059993196406796 T + p^{21} T^{2} ) \)
59$C_2$ \( ( 1 + p^{21} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 4870155553439314788 T + p^{21} T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{42} T^{4} \)
71$C_2$ \( ( 1 - p^{21} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 23086983136439707216 T + p^{21} T^{2} )( 1 + 69714495186591036006 T + p^{21} T^{2} ) \)
79$C_2$ \( ( 1 + p^{21} T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{42} T^{4} \)
89$C_2$ \( ( 1 - \)\(43\!\cdots\!90\)\( T + p^{21} T^{2} )( 1 + \)\(43\!\cdots\!90\)\( T + p^{21} T^{2} ) \)
97$C_2$ \( ( 1 - \)\(86\!\cdots\!08\)\( T + p^{21} T^{2} )( 1 + \)\(11\!\cdots\!82\)\( T + p^{21} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25051829154295742300208400610, −13.15225718285945647327861840672, −12.81883027670999444867619603102, −11.98096205664058392547200978307, −11.82645292723587370390192362615, −10.36898500357573671081268595481, −9.874628633682215048967141593746, −9.703921862747379807658037635640, −8.671429215790447072881769416543, −7.51071154727426746494247431713, −6.98201000792338960397359852635, −5.93461488415315789998387284426, −5.74121815871819107705499377746, −4.92408700134245283962330955635, −4.68420358236925903270578846616, −3.19662625265798288652667475151, −2.97123128440317506990390353146, −2.13555863354284580448345249747, −1.55724061711642973077294908131, −0.56242199730680107753845031783, 0.56242199730680107753845031783, 1.55724061711642973077294908131, 2.13555863354284580448345249747, 2.97123128440317506990390353146, 3.19662625265798288652667475151, 4.68420358236925903270578846616, 4.92408700134245283962330955635, 5.74121815871819107705499377746, 5.93461488415315789998387284426, 6.98201000792338960397359852635, 7.51071154727426746494247431713, 8.671429215790447072881769416543, 9.703921862747379807658037635640, 9.874628633682215048967141593746, 10.36898500357573671081268595481, 11.82645292723587370390192362615, 11.98096205664058392547200978307, 12.81883027670999444867619603102, 13.15225718285945647327861840672, 14.25051829154295742300208400610

Graph of the $Z$-function along the critical line