Properties

Label 4-209952-1.1-c1e2-0-8
Degree $4$
Conductor $209952$
Sign $1$
Analytic cond. $13.3867$
Root an. cond. $1.91279$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 6·11-s + 4·13-s + 16-s + 6·22-s + 3·23-s − 4·25-s + 4·26-s + 32-s + 7·37-s + 6·44-s + 3·46-s − 3·47-s − 4·49-s − 4·50-s + 4·52-s − 6·59-s − 17·61-s + 64-s + 9·71-s − 2·73-s + 7·74-s − 3·83-s + 6·88-s + 3·92-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1.80·11-s + 1.10·13-s + 1/4·16-s + 1.27·22-s + 0.625·23-s − 4/5·25-s + 0.784·26-s + 0.176·32-s + 1.15·37-s + 0.904·44-s + 0.442·46-s − 0.437·47-s − 4/7·49-s − 0.565·50-s + 0.554·52-s − 0.781·59-s − 2.17·61-s + 1/8·64-s + 1.06·71-s − 0.234·73-s + 0.813·74-s − 0.329·83-s + 0.639·88-s + 0.312·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(209952\)    =    \(2^{5} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(13.3867\)
Root analytic conductor: \(1.91279\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 209952,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.253113343\)
\(L(\frac12)\) \(\approx\) \(3.253113343\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 41 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.030996989438781728130189917057, −8.736475026258367752049914121628, −7.925307182018892621669287036291, −7.72249246460450028114927387731, −6.93006545507709582849218480790, −6.54665552175735329547565616894, −6.09892175179055918410560684533, −5.83132152023505480827070717523, −4.95690164496798987799026333370, −4.47279346799588355319748628621, −3.89877096820186001865602660196, −3.50118123062177251535335909911, −2.82677571691491076274597392456, −1.78869371510594636858718678253, −1.17272335587756497254229298370, 1.17272335587756497254229298370, 1.78869371510594636858718678253, 2.82677571691491076274597392456, 3.50118123062177251535335909911, 3.89877096820186001865602660196, 4.47279346799588355319748628621, 4.95690164496798987799026333370, 5.83132152023505480827070717523, 6.09892175179055918410560684533, 6.54665552175735329547565616894, 6.93006545507709582849218480790, 7.72249246460450028114927387731, 7.925307182018892621669287036291, 8.736475026258367752049914121628, 9.030996989438781728130189917057

Graph of the $Z$-function along the critical line