Properties

Label 4-209952-1.1-c1e2-0-2
Degree $4$
Conductor $209952$
Sign $1$
Analytic cond. $13.3867$
Root an. cond. $1.91279$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 3·11-s − 2·13-s + 16-s − 3·22-s + 12·23-s − 7·25-s − 2·26-s + 32-s + 10·37-s − 3·44-s + 12·46-s + 6·47-s + 5·49-s − 7·50-s − 2·52-s + 12·59-s + 4·61-s + 64-s + 73-s + 10·74-s + 6·83-s − 3·88-s + 12·92-s + 6·94-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 0.904·11-s − 0.554·13-s + 1/4·16-s − 0.639·22-s + 2.50·23-s − 7/5·25-s − 0.392·26-s + 0.176·32-s + 1.64·37-s − 0.452·44-s + 1.76·46-s + 0.875·47-s + 5/7·49-s − 0.989·50-s − 0.277·52-s + 1.56·59-s + 0.512·61-s + 1/8·64-s + 0.117·73-s + 1.16·74-s + 0.658·83-s − 0.319·88-s + 1.25·92-s + 0.618·94-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(209952\)    =    \(2^{5} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(13.3867\)
Root analytic conductor: \(1.91279\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 209952,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.517063610\)
\(L(\frac12)\) \(\approx\) \(2.517063610\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.026129019908772187071485135707, −8.613939219671200765460315094925, −7.933617314069736134368829467402, −7.55756739866551106279076578094, −7.16821278301953870536747588848, −6.66802986371476306529165742036, −6.02136980541090391017209854900, −5.50325664724285495618660757850, −5.13364610600543206575722297600, −4.57730489606276588333642305309, −4.00517135852989304461611093037, −3.30078339073299021127094761027, −2.64139272167887492536232147129, −2.19862661617361079661334145404, −0.912022968073060594850037855773, 0.912022968073060594850037855773, 2.19862661617361079661334145404, 2.64139272167887492536232147129, 3.30078339073299021127094761027, 4.00517135852989304461611093037, 4.57730489606276588333642305309, 5.13364610600543206575722297600, 5.50325664724285495618660757850, 6.02136980541090391017209854900, 6.66802986371476306529165742036, 7.16821278301953870536747588848, 7.55756739866551106279076578094, 7.933617314069736134368829467402, 8.613939219671200765460315094925, 9.026129019908772187071485135707

Graph of the $Z$-function along the critical line