Properties

Label 4-209952-1.1-c1e2-0-12
Degree $4$
Conductor $209952$
Sign $-1$
Analytic cond. $13.3867$
Root an. cond. $1.91279$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 6·11-s + 7·13-s + 16-s + 6·22-s − 3·23-s + 2·25-s − 7·26-s − 32-s − 17·37-s − 6·44-s + 3·46-s − 6·47-s − 4·49-s − 2·50-s + 7·52-s − 3·59-s − 5·61-s + 64-s + 9·71-s − 8·73-s + 17·74-s − 6·83-s + 6·88-s − 3·92-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 1.80·11-s + 1.94·13-s + 1/4·16-s + 1.27·22-s − 0.625·23-s + 2/5·25-s − 1.37·26-s − 0.176·32-s − 2.79·37-s − 0.904·44-s + 0.442·46-s − 0.875·47-s − 4/7·49-s − 0.282·50-s + 0.970·52-s − 0.390·59-s − 0.640·61-s + 1/8·64-s + 1.06·71-s − 0.936·73-s + 1.97·74-s − 0.658·83-s + 0.639·88-s − 0.312·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(209952\)    =    \(2^{5} \cdot 3^{8}\)
Sign: $-1$
Analytic conductor: \(13.3867\)
Root analytic conductor: \(1.91279\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 209952,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 41 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.629385276507449803961914456874, −8.441118034331777184341958900492, −8.024388843455897226029319866828, −7.51444591180234071216773030473, −6.96460162984252591258296745907, −6.45406965081292175877524735543, −5.95034013745279661508505530031, −5.40095774134454794341597659061, −5.00038616437170600269460847264, −4.15833731826171789779502059600, −3.40222320204255249264985227549, −3.04368076244806356394642727093, −2.09352024097234021857032306379, −1.39358619364689210941072500297, 0, 1.39358619364689210941072500297, 2.09352024097234021857032306379, 3.04368076244806356394642727093, 3.40222320204255249264985227549, 4.15833731826171789779502059600, 5.00038616437170600269460847264, 5.40095774134454794341597659061, 5.95034013745279661508505530031, 6.45406965081292175877524735543, 6.96460162984252591258296745907, 7.51444591180234071216773030473, 8.024388843455897226029319866828, 8.441118034331777184341958900492, 8.629385276507449803961914456874

Graph of the $Z$-function along the critical line