Properties

Label 4-207e2-1.1-c3e2-0-1
Degree $4$
Conductor $42849$
Sign $1$
Analytic cond. $149.167$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·4-s − 8·5-s − 28·7-s − 12·8-s − 16·10-s + 72·11-s − 60·13-s − 56·14-s − 11·16-s − 96·17-s − 148·19-s + 40·20-s + 144·22-s − 46·23-s − 74·25-s − 120·26-s + 140·28-s + 204·29-s − 168·31-s − 122·32-s − 192·34-s + 224·35-s + 116·37-s − 296·38-s + 96·40-s − 4·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 5/8·4-s − 0.715·5-s − 1.51·7-s − 0.530·8-s − 0.505·10-s + 1.97·11-s − 1.28·13-s − 1.06·14-s − 0.171·16-s − 1.36·17-s − 1.78·19-s + 0.447·20-s + 1.39·22-s − 0.417·23-s − 0.591·25-s − 0.905·26-s + 0.944·28-s + 1.30·29-s − 0.973·31-s − 0.673·32-s − 0.968·34-s + 1.08·35-s + 0.515·37-s − 1.26·38-s + 0.379·40-s − 0.0152·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42849 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42849 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(42849\)    =    \(3^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(149.167\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 42849,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
23$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 - p T + 9 T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 8 T + 138 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
7$C_4$ \( 1 + 4 p T + 874 T^{2} + 4 p^{4} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 72 T + 3566 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 60 T + 5006 T^{2} + 60 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 96 T + 11930 T^{2} + 96 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 148 T + 14586 T^{2} + 148 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 204 T + 24334 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 168 T + 43310 T^{2} + 168 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 116 T + 89878 T^{2} - 116 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 132438 T^{2} + 4 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 420 T + 200522 T^{2} + 420 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 48 T + 146270 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 32 T + 297210 T^{2} + 32 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 40 T + 211446 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 764 T + 580678 T^{2} + 764 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 988 T + 675034 T^{2} + 988 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 224 T + 73998 T^{2} - 224 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 820 T + 921046 T^{2} - 820 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 1772 T + 1743226 T^{2} - 1772 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1480 T + 1335006 T^{2} + 1480 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 744 T + 1044314 T^{2} + 744 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 260 T + 178758 T^{2} + 260 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06132786428238794874788048828, −11.25678540656775151989507403257, −10.89779754449175077336215185777, −10.12891452228298300512903778709, −9.501259197425938196948591801396, −9.430446786063440349718171838769, −8.723152197346698921612891831737, −8.394959704738237188382798298039, −7.50544644875786313813837304064, −6.85113279139932214816535044586, −6.32788804697468396728078837971, −6.32364180697561043563539853805, −5.07612916495418896418534243292, −4.49051048686462884503053360268, −4.06630158404476451562751306623, −3.69594002042427584732786389401, −2.79370264610506379733462122524, −1.80474675132387779577310287004, 0, 0, 1.80474675132387779577310287004, 2.79370264610506379733462122524, 3.69594002042427584732786389401, 4.06630158404476451562751306623, 4.49051048686462884503053360268, 5.07612916495418896418534243292, 6.32364180697561043563539853805, 6.32788804697468396728078837971, 6.85113279139932214816535044586, 7.50544644875786313813837304064, 8.394959704738237188382798298039, 8.723152197346698921612891831737, 9.430446786063440349718171838769, 9.501259197425938196948591801396, 10.12891452228298300512903778709, 10.89779754449175077336215185777, 11.25678540656775151989507403257, 12.06132786428238794874788048828

Graph of the $Z$-function along the critical line