| L(s) = 1 | − 2·2-s + 4-s − 4·5-s − 4·7-s + 8·10-s + 8·14-s + 16-s − 12·17-s − 4·19-s − 4·20-s − 2·23-s + 4·25-s − 4·28-s + 2·32-s + 24·34-s + 16·35-s − 4·37-s + 8·38-s − 8·41-s − 12·43-s + 4·46-s + 12·47-s − 8·50-s − 4·53-s − 4·59-s + 4·61-s − 11·64-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 1/2·4-s − 1.78·5-s − 1.51·7-s + 2.52·10-s + 2.13·14-s + 1/4·16-s − 2.91·17-s − 0.917·19-s − 0.894·20-s − 0.417·23-s + 4/5·25-s − 0.755·28-s + 0.353·32-s + 4.11·34-s + 2.70·35-s − 0.657·37-s + 1.29·38-s − 1.24·41-s − 1.82·43-s + 0.589·46-s + 1.75·47-s − 1.13·50-s − 0.549·53-s − 0.520·59-s + 0.512·61-s − 1.37·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 42849 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42849 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.04306302795660426804772859266, −11.52713216980327215340107252533, −11.09915204036058115924477961631, −10.71860312590790766445805174303, −9.964339978482274388033449522212, −9.693209197077215297876867136019, −9.064007541260421417540531878023, −8.698348566219021670728500586163, −8.173836918809145473864207718720, −8.043276254295977733764515035215, −6.87087535512029452118997036170, −6.82579595939579436685762391846, −6.36460821236070883670931088360, −5.23283621324211346579253115359, −4.27328667449444397289866024716, −3.98853768470853157072991182226, −3.21105387653454934310381798050, −2.20177691065970790790432842988, 0, 0,
2.20177691065970790790432842988, 3.21105387653454934310381798050, 3.98853768470853157072991182226, 4.27328667449444397289866024716, 5.23283621324211346579253115359, 6.36460821236070883670931088360, 6.82579595939579436685762391846, 6.87087535512029452118997036170, 8.043276254295977733764515035215, 8.173836918809145473864207718720, 8.698348566219021670728500586163, 9.064007541260421417540531878023, 9.693209197077215297876867136019, 9.964339978482274388033449522212, 10.71860312590790766445805174303, 11.09915204036058115924477961631, 11.52713216980327215340107252533, 12.04306302795660426804772859266