Properties

Label 4-207e2-1.1-c1e2-0-1
Degree $4$
Conductor $42849$
Sign $1$
Analytic cond. $2.73208$
Root an. cond. $1.28565$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 2·5-s + 2·7-s − 8·11-s − 3·16-s + 10·17-s + 10·19-s + 2·20-s − 2·23-s − 2·25-s + 2·28-s − 4·31-s + 4·35-s + 4·41-s + 2·43-s − 8·44-s + 8·47-s − 6·49-s + 6·53-s − 16·55-s − 8·59-s − 7·64-s + 6·67-s + 10·68-s + 16·71-s − 4·73-s + 10·76-s + ⋯
L(s)  = 1  + 1/2·4-s + 0.894·5-s + 0.755·7-s − 2.41·11-s − 3/4·16-s + 2.42·17-s + 2.29·19-s + 0.447·20-s − 0.417·23-s − 2/5·25-s + 0.377·28-s − 0.718·31-s + 0.676·35-s + 0.624·41-s + 0.304·43-s − 1.20·44-s + 1.16·47-s − 6/7·49-s + 0.824·53-s − 2.15·55-s − 1.04·59-s − 7/8·64-s + 0.733·67-s + 1.21·68-s + 1.89·71-s − 0.468·73-s + 1.14·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 42849 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 42849 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(42849\)    =    \(3^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(2.73208\)
Root analytic conductor: \(1.28565\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 42849,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.765192605\)
\(L(\frac12)\) \(\approx\) \(1.765192605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
23$C_1$ \( ( 1 + T )^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - 2 T + 6 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 10 T + 54 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 10 T + 58 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_4$ \( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_4$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 2 T + 42 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 - 6 T + 110 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 6 T + 138 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 6 T + 122 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$D_{4}$ \( 1 + 2 T + 174 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 8 T + 190 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41635686132260183619352698019, −12.26819729161161278646565244989, −11.70634698476176216317390232283, −10.98870331069602887125074447346, −10.83265173232447580992191552433, −10.14881173928693498675562834367, −9.622293403792038343965844034665, −9.614593930167483088583521843275, −8.569419856824371148104097405995, −7.83146599695803646210358425141, −7.64395047814074730330078373815, −7.40368496525374545864537169215, −6.35969305762392117272338848679, −5.50476019734614739065412695050, −5.43198506095900549009701604360, −5.06796354574754375643604479623, −3.82089084173819696868734908335, −2.91408960709706569416398030595, −2.43350663926757041321316798946, −1.36694706165124286307138591500, 1.36694706165124286307138591500, 2.43350663926757041321316798946, 2.91408960709706569416398030595, 3.82089084173819696868734908335, 5.06796354574754375643604479623, 5.43198506095900549009701604360, 5.50476019734614739065412695050, 6.35969305762392117272338848679, 7.40368496525374545864537169215, 7.64395047814074730330078373815, 7.83146599695803646210358425141, 8.569419856824371148104097405995, 9.614593930167483088583521843275, 9.622293403792038343965844034665, 10.14881173928693498675562834367, 10.83265173232447580992191552433, 10.98870331069602887125074447346, 11.70634698476176216317390232283, 12.26819729161161278646565244989, 12.41635686132260183619352698019

Graph of the $Z$-function along the critical line