Properties

Label 4-2059-1.1-c1e2-0-0
Degree $4$
Conductor $2059$
Sign $-1$
Analytic cond. $0.131283$
Root an. cond. $0.601939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s − 5-s + 2·6-s − 4·7-s + 4·8-s − 3·9-s + 2·10-s − 11-s + 2·13-s + 8·14-s + 15-s − 4·16-s − 3·17-s + 6·18-s − 2·19-s + 4·21-s + 2·22-s + 23-s − 4·24-s − 4·26-s + 4·27-s + 8·29-s − 2·30-s − 8·31-s + 33-s + 6·34-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s − 0.447·5-s + 0.816·6-s − 1.51·7-s + 1.41·8-s − 9-s + 0.632·10-s − 0.301·11-s + 0.554·13-s + 2.13·14-s + 0.258·15-s − 16-s − 0.727·17-s + 1.41·18-s − 0.458·19-s + 0.872·21-s + 0.426·22-s + 0.208·23-s − 0.816·24-s − 0.784·26-s + 0.769·27-s + 1.48·29-s − 0.365·30-s − 1.43·31-s + 0.174·33-s + 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2059 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2059 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2059\)    =    \(29 \cdot 71\)
Sign: $-1$
Analytic conductor: \(0.131283\)
Root analytic conductor: \(0.601939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2059,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad29$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 9 T + p T^{2} ) \)
71$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 9 T + p T^{2} ) \)
good2$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
3$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$D_{4}$ \( 1 + T + T^{2} + p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + T + 13 T^{2} + p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$D_{4}$ \( 1 + 3 T + 19 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 3 T - 17 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 3 T + 52 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 5 T + 19 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 6 T + 82 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$D_{4}$ \( 1 + 9 T + 49 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
67$C_4$ \( 1 + 6 T + 106 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 2 T - 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 10 T + 154 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 20 T + 232 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.0990465480, −18.3855396893, −18.0384025584, −17.6273899031, −16.9042794007, −16.6733137515, −16.1180000920, −15.6093557259, −14.8705576560, −14.0882470176, −13.3136900402, −13.1312058945, −12.2330087092, −11.6465847000, −10.7930841746, −10.4759483637, −9.70013483660, −9.10419218973, −8.60655478909, −8.11172877045, −7.03690977138, −6.36033287239, −5.49400412471, −4.34100873259, −3.12326742958, 0, 3.12326742958, 4.34100873259, 5.49400412471, 6.36033287239, 7.03690977138, 8.11172877045, 8.60655478909, 9.10419218973, 9.70013483660, 10.4759483637, 10.7930841746, 11.6465847000, 12.2330087092, 13.1312058945, 13.3136900402, 14.0882470176, 14.8705576560, 15.6093557259, 16.1180000920, 16.6733137515, 16.9042794007, 17.6273899031, 18.0384025584, 18.3855396893, 19.0990465480

Graph of the $Z$-function along the critical line