L(s) = 1 | + 6·3-s + 27·9-s + 28·17-s − 144·23-s + 246·25-s + 108·27-s + 204·29-s + 280·43-s − 338·49-s + 168·51-s + 1.05e3·53-s − 820·61-s − 864·69-s + 1.47e3·75-s − 1.28e3·79-s + 405·81-s + 1.22e3·87-s + 1.22e3·101-s + 2.70e3·103-s − 3.03e3·113-s − 1.96e3·121-s + 127-s + 1.68e3·129-s + 131-s + 137-s + 139-s − 2.02e3·147-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 9-s + 0.399·17-s − 1.30·23-s + 1.96·25-s + 0.769·27-s + 1.30·29-s + 0.993·43-s − 0.985·49-s + 0.461·51-s + 2.72·53-s − 1.72·61-s − 1.50·69-s + 2.27·75-s − 1.82·79-s + 5/9·81-s + 1.50·87-s + 1.20·101-s + 2.58·103-s − 2.52·113-s − 1.47·121-s + 0.000698·127-s + 1.14·129-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 1.13·147-s + ⋯ |
Λ(s)=(=(4112784s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(4112784s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4112784
= 24⋅32⋅134
|
Sign: |
1
|
Analytic conductor: |
14317.5 |
Root analytic conductor: |
10.9387 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 4112784, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.324911551 |
L(21) |
≈ |
5.324911551 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 13 | | 1 |
good | 5 | C22 | 1−246T2+p6T4 |
| 7 | C22 | 1+338T2+p6T4 |
| 11 | C22 | 1+1962T2+p6T4 |
| 17 | C2 | (1−14T+p3T2)2 |
| 19 | C22 | 1−13702T2+p6T4 |
| 23 | C2 | (1+72T+p3T2)2 |
| 29 | C2 | (1−102T+p3T2)2 |
| 31 | C22 | 1−41086T2+p6T4 |
| 37 | C22 | 1+47690T2+p6T4 |
| 41 | C22 | 1−75342T2+p6T4 |
| 43 | C2 | (1−140T+p3T2)2 |
| 47 | C22 | 1−120030T2+p6T4 |
| 53 | C2 | (1−526T+p3T2)2 |
| 59 | C22 | 1−300534T2+p6T4 |
| 61 | C2 | (1+410T+p3T2)2 |
| 67 | C22 | 1−246310T2+p6T4 |
| 71 | C22 | 1+58578T2+p6T4 |
| 73 | C22 | 1−521998T2+p6T4 |
| 79 | C2 | (1+640T+p3T2)2 |
| 83 | C22 | 1+760826T2+p6T4 |
| 89 | C22 | 1+692562T2+p6T4 |
| 97 | C22 | 1−1626430T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.124274325822656895203433760919, −8.519926980992739635935754671017, −8.374353947812951283536540023160, −7.71823997685475186750354013703, −7.64628119322417793580509004451, −7.06620956274989615360234939962, −6.75685636226184684741923616383, −6.22415003086038462786123877335, −5.96066261953728101922559712026, −5.23672851518401069917398648869, −4.94688989206704124506213762350, −4.39768572170333406033630841599, −4.02445682722962573778310429542, −3.60408325007648737536345349268, −2.99794688425899016482321795487, −2.64924450538313261881176546796, −2.33425926609340014814110981864, −1.48225111171507079653476834222, −1.16898147348237885581706773418, −0.44891388009551541113233175732,
0.44891388009551541113233175732, 1.16898147348237885581706773418, 1.48225111171507079653476834222, 2.33425926609340014814110981864, 2.64924450538313261881176546796, 2.99794688425899016482321795487, 3.60408325007648737536345349268, 4.02445682722962573778310429542, 4.39768572170333406033630841599, 4.94688989206704124506213762350, 5.23672851518401069917398648869, 5.96066261953728101922559712026, 6.22415003086038462786123877335, 6.75685636226184684741923616383, 7.06620956274989615360234939962, 7.64628119322417793580509004451, 7.71823997685475186750354013703, 8.374353947812951283536540023160, 8.519926980992739635935754671017, 9.124274325822656895203433760919