Properties

Label 4-200e2-1.1-c3e2-0-10
Degree $4$
Conductor $40000$
Sign $1$
Analytic cond. $139.249$
Root an. cond. $3.43516$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 4·7-s − 18·9-s + 40·11-s + 104·13-s + 96·17-s + 40·19-s + 16·21-s + 284·23-s − 100·27-s − 140·29-s + 192·31-s + 160·33-s + 200·37-s + 416·39-s − 524·41-s + 372·43-s + 84·47-s − 458·49-s + 384·51-s − 296·53-s + 160·57-s + 696·59-s − 692·61-s − 72·63-s + 316·67-s + 1.13e3·69-s + ⋯
L(s)  = 1  + 0.769·3-s + 0.215·7-s − 2/3·9-s + 1.09·11-s + 2.21·13-s + 1.36·17-s + 0.482·19-s + 0.166·21-s + 2.57·23-s − 0.712·27-s − 0.896·29-s + 1.11·31-s + 0.844·33-s + 0.888·37-s + 1.70·39-s − 1.99·41-s + 1.31·43-s + 0.260·47-s − 1.33·49-s + 1.05·51-s − 0.767·53-s + 0.371·57-s + 1.53·59-s − 1.45·61-s − 0.143·63-s + 0.576·67-s + 1.98·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(40000\)    =    \(2^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(139.249\)
Root analytic conductor: \(3.43516\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 40000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.319219725\)
\(L(\frac12)\) \(\approx\) \(4.319219725\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( 1 - 4 T + 34 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 4 T + 474 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 40 T + 1526 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 8 p T + 7002 T^{2} - 8 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 96 T + 5986 T^{2} - 96 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 40 T + 12582 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 284 T + 40442 T^{2} - 284 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 140 T + 47534 T^{2} + 140 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 192 T + 13502 T^{2} - 192 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 200 T + 83562 T^{2} - 200 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 524 T + 203030 T^{2} + 524 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 372 T + 183026 T^{2} - 372 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 84 T + 108010 T^{2} - 84 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 296 T + 29258 T^{2} + 296 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 696 T + 346006 T^{2} - 696 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 692 T + 554862 T^{2} + 692 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 316 T + 625314 T^{2} - 316 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 688 T + 809582 T^{2} - 688 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 656 T + 682482 T^{2} + 656 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 736 T + 1115358 T^{2} + 736 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1628 T + 1748546 T^{2} + 1628 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 660 T + 1463542 T^{2} + 660 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 896 T + 1987650 T^{2} - 896 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19019891942224951465890447375, −11.58243418425407907771342564189, −11.30496087993865054132007647148, −10.98847634051253087292817252885, −10.29035985607098953608329772925, −9.590891518305102290988432101320, −9.146723365077019348941730067500, −8.820297088352843474354050173484, −8.119620680281278902308705138260, −8.115639746554935950875759472259, −7.01345754005955922032390031789, −6.72916188792329367570159562389, −5.82681535337982529505919996246, −5.60135589540183461344715700402, −4.66596494983546019280649525305, −3.85447943702866990821757377403, −3.21432629344216440455168142113, −2.94627604639864030210588474962, −1.44957713415545444810921398325, −1.03604333643836670549820646941, 1.03604333643836670549820646941, 1.44957713415545444810921398325, 2.94627604639864030210588474962, 3.21432629344216440455168142113, 3.85447943702866990821757377403, 4.66596494983546019280649525305, 5.60135589540183461344715700402, 5.82681535337982529505919996246, 6.72916188792329367570159562389, 7.01345754005955922032390031789, 8.115639746554935950875759472259, 8.119620680281278902308705138260, 8.820297088352843474354050173484, 9.146723365077019348941730067500, 9.590891518305102290988432101320, 10.29035985607098953608329772925, 10.98847634051253087292817252885, 11.30496087993865054132007647148, 11.58243418425407907771342564189, 12.19019891942224951465890447375

Graph of the $Z$-function along the critical line