| L(s) = 1 | + 2-s − 4-s − 7-s − 3·8-s − 9-s − 14-s − 16-s − 18-s − 2·25-s + 28-s − 8·29-s + 5·32-s + 36-s + 8·37-s + 8·43-s + 49-s − 2·50-s + 16·53-s + 3·56-s − 8·58-s + 63-s + 7·64-s + 8·71-s + 3·72-s + 8·74-s + 16·79-s + 81-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s − 1/3·9-s − 0.267·14-s − 1/4·16-s − 0.235·18-s − 2/5·25-s + 0.188·28-s − 1.48·29-s + 0.883·32-s + 1/6·36-s + 1.31·37-s + 1.21·43-s + 1/7·49-s − 0.282·50-s + 2.19·53-s + 0.400·56-s − 1.05·58-s + 0.125·63-s + 7/8·64-s + 0.949·71-s + 0.353·72-s + 0.929·74-s + 1.80·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 197568 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197568 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.499275166\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.499275166\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.238879676310683936239309686272, −8.715491847344747864034263141343, −8.058444420985550901489535521991, −7.79961963051811672837280599905, −7.06658899531469629692365034640, −6.61629162482949800133275291791, −5.90975680274322949063473683183, −5.66985875865153575451317779965, −5.20295829665866836989138489172, −4.43167623125588569125019680873, −3.98907773898537122548418353024, −3.52291225486626047826688607349, −2.77502878580488056295383711588, −2.13693696493325132336260039083, −0.69540681595204814212171147456,
0.69540681595204814212171147456, 2.13693696493325132336260039083, 2.77502878580488056295383711588, 3.52291225486626047826688607349, 3.98907773898537122548418353024, 4.43167623125588569125019680873, 5.20295829665866836989138489172, 5.66985875865153575451317779965, 5.90975680274322949063473683183, 6.61629162482949800133275291791, 7.06658899531469629692365034640, 7.79961963051811672837280599905, 8.058444420985550901489535521991, 8.715491847344747864034263141343, 9.238879676310683936239309686272