Properties

Label 4-1950e2-1.1-c1e2-0-7
Degree $4$
Conductor $3802500$
Sign $1$
Analytic cond. $242.450$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 6-s + 2·7-s + 8-s − 6·11-s + 7·13-s − 2·14-s − 16-s − 3·17-s − 2·19-s + 2·21-s + 6·22-s − 6·23-s + 24-s − 7·26-s − 27-s − 3·29-s − 8·31-s − 6·33-s + 3·34-s − 7·37-s + 2·38-s + 7·39-s + 3·41-s − 2·42-s − 10·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 0.408·6-s + 0.755·7-s + 0.353·8-s − 1.80·11-s + 1.94·13-s − 0.534·14-s − 1/4·16-s − 0.727·17-s − 0.458·19-s + 0.436·21-s + 1.27·22-s − 1.25·23-s + 0.204·24-s − 1.37·26-s − 0.192·27-s − 0.557·29-s − 1.43·31-s − 1.04·33-s + 0.514·34-s − 1.15·37-s + 0.324·38-s + 1.12·39-s + 0.468·41-s − 0.308·42-s − 1.52·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3802500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3802500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3802500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(242.450\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3802500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7110909140\)
\(L(\frac12)\) \(\approx\) \(0.7110909140\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3$C_2$ \( 1 - T + T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 - 7 T + p T^{2} \)
good7$C_2^2$ \( 1 - 2 T - 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 7 T + 12 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 10 T + 57 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 7 T - 12 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 10 T + 33 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 6 T - 35 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 13 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 18 T + 235 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.296293690340900925765819938554, −8.715927878463112715413151348196, −8.643717069149459106011447601934, −8.274442127281453992446882320501, −7.921729590370679079173151828655, −7.74853050479598642576672807887, −7.19750935368901669164601888926, −6.61878459451499097519724862605, −6.37676094692263901996284236351, −5.62554748738814150318699852792, −5.48689662705316968474346515922, −4.96379307788970275424519328362, −4.49192324638086014736300277949, −3.76051256825885755036106234753, −3.71382677890955821401430475414, −2.98608368215299611266035932527, −2.36785093839935018985393230343, −1.73483325226765150085499433309, −1.60552103111014607058052376755, −0.31905442401513903992629206416, 0.31905442401513903992629206416, 1.60552103111014607058052376755, 1.73483325226765150085499433309, 2.36785093839935018985393230343, 2.98608368215299611266035932527, 3.71382677890955821401430475414, 3.76051256825885755036106234753, 4.49192324638086014736300277949, 4.96379307788970275424519328362, 5.48689662705316968474346515922, 5.62554748738814150318699852792, 6.37676094692263901996284236351, 6.61878459451499097519724862605, 7.19750935368901669164601888926, 7.74853050479598642576672807887, 7.921729590370679079173151828655, 8.274442127281453992446882320501, 8.643717069149459106011447601934, 8.715927878463112715413151348196, 9.296293690340900925765819938554

Graph of the $Z$-function along the critical line