Properties

Label 4-1950e2-1.1-c1e2-0-27
Degree $4$
Conductor $3802500$
Sign $1$
Analytic cond. $242.450$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 4·7-s − 4·8-s − 9-s − 4·13-s − 8·14-s + 5·16-s + 2·18-s + 8·26-s + 12·28-s + 20·29-s − 6·32-s − 3·36-s − 16·37-s + 24·47-s − 2·49-s − 12·52-s − 16·56-s − 40·58-s + 4·61-s − 4·63-s + 7·64-s + 4·67-s + 4·72-s − 8·73-s + 32·74-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s + 1.51·7-s − 1.41·8-s − 1/3·9-s − 1.10·13-s − 2.13·14-s + 5/4·16-s + 0.471·18-s + 1.56·26-s + 2.26·28-s + 3.71·29-s − 1.06·32-s − 1/2·36-s − 2.63·37-s + 3.50·47-s − 2/7·49-s − 1.66·52-s − 2.13·56-s − 5.25·58-s + 0.512·61-s − 0.503·63-s + 7/8·64-s + 0.488·67-s + 0.471·72-s − 0.936·73-s + 3.71·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3802500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3802500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3802500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(242.450\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3802500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.388420604\)
\(L(\frac12)\) \(\approx\) \(1.388420604\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.052545989215902396018189445234, −9.018004662881399509192646319293, −8.468212525277996482542995016108, −8.460347589898186358674868817946, −7.79743475197748041815268343052, −7.69540321604552579539324128677, −6.98716070297077277256115575438, −6.95939253208227105026924536217, −6.40540195270996919453928869184, −5.86414895295749421271660378898, −5.27490182008906782889769045452, −5.11119509728700263407936174600, −4.44317927517669356159017990914, −4.24293063716704901324541428581, −3.07503171863172281753892584264, −3.05789196260715498843694751148, −2.11052606940190957352736046954, −2.03842459472598429319864687694, −1.13070880181262797945631025726, −0.61376638006350763154283655686, 0.61376638006350763154283655686, 1.13070880181262797945631025726, 2.03842459472598429319864687694, 2.11052606940190957352736046954, 3.05789196260715498843694751148, 3.07503171863172281753892584264, 4.24293063716704901324541428581, 4.44317927517669356159017990914, 5.11119509728700263407936174600, 5.27490182008906782889769045452, 5.86414895295749421271660378898, 6.40540195270996919453928869184, 6.95939253208227105026924536217, 6.98716070297077277256115575438, 7.69540321604552579539324128677, 7.79743475197748041815268343052, 8.460347589898186358674868817946, 8.468212525277996482542995016108, 9.018004662881399509192646319293, 9.052545989215902396018189445234

Graph of the $Z$-function along the critical line