Properties

Label 4-192e2-1.1-c7e2-0-6
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $3597.35$
Root an. cond. $7.74454$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 54·3-s − 180·5-s − 1.03e3·7-s + 2.18e3·9-s + 2.84e3·11-s + 340·13-s − 9.72e3·15-s + 9.78e3·17-s + 3.20e4·19-s − 5.57e4·21-s − 1.11e4·23-s − 7.17e4·25-s + 7.87e4·27-s − 3.04e5·29-s + 7.76e4·31-s + 1.53e5·33-s + 1.85e5·35-s − 1.01e6·37-s + 1.83e4·39-s + 7.04e5·41-s − 3.95e5·43-s − 3.93e5·45-s − 1.15e6·47-s + 6.55e5·49-s + 5.28e5·51-s − 1.56e6·53-s − 5.11e5·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.643·5-s − 1.13·7-s + 9-s + 0.643·11-s + 0.0429·13-s − 0.743·15-s + 0.482·17-s + 1.07·19-s − 1.31·21-s − 0.190·23-s − 0.918·25-s + 0.769·27-s − 2.31·29-s + 0.468·31-s + 0.742·33-s + 0.732·35-s − 3.29·37-s + 0.0495·39-s + 1.59·41-s − 0.758·43-s − 0.643·45-s − 1.62·47-s + 0.796·49-s + 0.557·51-s − 1.44·53-s − 0.414·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(3597.35\)
Root analytic conductor: \(7.74454\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 36864,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p^{3} T )^{2} \)
good5$D_{4}$ \( 1 + 36 p T + 20838 p T^{2} + 36 p^{8} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 + 1032 T + 409342 T^{2} + 1032 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 - 2840 T + 38824982 T^{2} - 2840 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 340 T + 19403694 T^{2} - 340 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 - 9780 T + 478576006 T^{2} - 9780 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 - 32040 T + 1749599878 T^{2} - 32040 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 + 11136 T + 289229518 T^{2} + 11136 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 304212 T + 57634483854 T^{2} + 304212 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 - 77640 T + 1538948722 p T^{2} - 77640 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 1015820 T + 447827659326 T^{2} + 1015820 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 - 704100 T + 449624006262 T^{2} - 704100 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 395496 T + 503179893718 T^{2} + 395496 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 1157488 T + 1172277002462 T^{2} + 1157488 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 1568580 T + 2748040766334 T^{2} + 1568580 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 - 40 p^{2} T + 1925517532598 T^{2} - 40 p^{9} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 2603580 T + 5065896220142 T^{2} + 2603580 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 5289768 T + 18885723928102 T^{2} + 5289768 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 5721760 T + 24709125868142 T^{2} + 5721760 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 1190700 T + 17205639157334 T^{2} + 1190700 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 - 398280 T + 21875776506478 T^{2} - 398280 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 6986616 T + 48072352746118 T^{2} + 6986616 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 8166732 T + 74896738657014 T^{2} + 8166732 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 10361500 T + 164015274574086 T^{2} + 10361500 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98616858538438537170612415414, −10.34864989668900290612101234244, −9.785893749169103364357865976934, −9.561474851904512813375408342583, −8.935056142133905938490840088820, −8.689713727279348893369282437203, −7.73293713523800053261502582224, −7.60486971419363210483031050716, −7.08427718477604612639810458046, −6.41056389856563389718325532680, −5.80503667832348388339941018401, −5.14260172369309533841908137007, −4.18241482488771285629178448986, −3.80535274720491582520298318201, −3.11244936847674936643152148124, −3.04323680147922211300873316915, −1.62958698373710952628227809618, −1.55427171671921840424117343047, 0, 0, 1.55427171671921840424117343047, 1.62958698373710952628227809618, 3.04323680147922211300873316915, 3.11244936847674936643152148124, 3.80535274720491582520298318201, 4.18241482488771285629178448986, 5.14260172369309533841908137007, 5.80503667832348388339941018401, 6.41056389856563389718325532680, 7.08427718477604612639810458046, 7.60486971419363210483031050716, 7.73293713523800053261502582224, 8.689713727279348893369282437203, 8.935056142133905938490840088820, 9.561474851904512813375408342583, 9.785893749169103364357865976934, 10.34864989668900290612101234244, 10.98616858538438537170612415414

Graph of the $Z$-function along the critical line