Properties

Label 4-192e2-1.1-c4e2-0-2
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $393.904$
Root an. cond. $4.45500$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 52·7-s − 45·9-s − 100·13-s + 716·19-s + 312·21-s + 962·25-s − 756·27-s − 1.48e3·31-s − 3.74e3·37-s − 600·39-s + 524·43-s − 2.77e3·49-s + 4.29e3·57-s + 2.97e3·61-s − 2.34e3·63-s + 8.97e3·67-s + 580·73-s + 5.77e3·75-s + 1.96e4·79-s − 891·81-s − 5.20e3·91-s − 8.90e3·93-s − 956·97-s + 4.27e3·103-s + 9.50e3·109-s − 2.24e4·111-s + ⋯
L(s)  = 1  + 2/3·3-s + 1.06·7-s − 5/9·9-s − 0.591·13-s + 1.98·19-s + 0.707·21-s + 1.53·25-s − 1.03·27-s − 1.54·31-s − 2.73·37-s − 0.394·39-s + 0.283·43-s − 1.15·49-s + 1.32·57-s + 0.798·61-s − 0.589·63-s + 1.99·67-s + 0.108·73-s + 1.02·75-s + 3.14·79-s − 0.135·81-s − 0.627·91-s − 1.02·93-s − 0.101·97-s + 0.403·103-s + 0.799·109-s − 1.82·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(393.904\)
Root analytic conductor: \(4.45500\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 36864,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(3.306409577\)
\(L(\frac12)\) \(\approx\) \(3.306409577\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 p T + p^{4} T^{2} \)
good5$C_2^2$ \( 1 - 962 T^{2} + p^{8} T^{4} \)
7$C_2$ \( ( 1 - 26 T + p^{4} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 15170 T^{2} + p^{8} T^{4} \)
13$C_2$ \( ( 1 + 50 T + p^{4} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 125570 T^{2} + p^{8} T^{4} \)
19$C_2$ \( ( 1 - 358 T + p^{4} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 420290 T^{2} + p^{8} T^{4} \)
29$C_2^2$ \( 1 + 666238 T^{2} + p^{8} T^{4} \)
31$C_2$ \( ( 1 + 742 T + p^{4} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 1874 T + p^{4} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 155710 T^{2} + p^{8} T^{4} \)
43$C_2$ \( ( 1 - 262 T + p^{4} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 6879362 T^{2} + p^{8} T^{4} \)
53$C_2^2$ \( 1 - 15571010 T^{2} + p^{8} T^{4} \)
59$C_2^2$ \( 1 - 20937410 T^{2} + p^{8} T^{4} \)
61$C_2$ \( ( 1 - 1486 T + p^{4} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4486 T + p^{4} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 38122562 T^{2} + p^{8} T^{4} \)
73$C_2$ \( ( 1 - 290 T + p^{4} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 9818 T + p^{4} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 44355074 T^{2} + p^{8} T^{4} \)
89$C_2^2$ \( 1 - 64012610 T^{2} + p^{8} T^{4} \)
97$C_2$ \( ( 1 + 478 T + p^{4} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.13572084323587795842806660455, −11.59214694489718503583264401374, −11.06977077591468786882603903159, −10.82882629240916553376013116433, −10.07486325947133788879535089804, −9.426504158342018505122057424575, −9.209624262902816517874453476204, −8.340427143598179235707095022318, −8.339522437574098527424032689293, −7.45126370185651206957102741019, −7.20920406904615737950802354198, −6.51861008995150278593856158806, −5.35627037593822518407689628404, −5.31960352023633933881650303822, −4.72280031133293900194793702409, −3.42911193892990786501886081777, −3.40291170043334504149268685203, −2.29090268279638721015791439585, −1.66263590166931587735789856654, −0.63398851782687898838675883218, 0.63398851782687898838675883218, 1.66263590166931587735789856654, 2.29090268279638721015791439585, 3.40291170043334504149268685203, 3.42911193892990786501886081777, 4.72280031133293900194793702409, 5.31960352023633933881650303822, 5.35627037593822518407689628404, 6.51861008995150278593856158806, 7.20920406904615737950802354198, 7.45126370185651206957102741019, 8.339522437574098527424032689293, 8.340427143598179235707095022318, 9.209624262902816517874453476204, 9.426504158342018505122057424575, 10.07486325947133788879535089804, 10.82882629240916553376013116433, 11.06977077591468786882603903159, 11.59214694489718503583264401374, 12.13572084323587795842806660455

Graph of the $Z$-function along the critical line