Properties

Label 4-192e2-1.1-c2e2-0-3
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $27.3698$
Root an. cond. $2.28727$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 12·7-s − 5·9-s − 20·13-s + 4·19-s + 24·21-s + 18·25-s − 28·27-s + 44·31-s + 12·37-s − 40·39-s + 164·43-s + 10·49-s + 8·57-s + 172·61-s − 60·63-s + 4·67-s + 164·73-s + 36·75-s − 20·79-s − 11·81-s − 240·91-s + 88·93-s − 188·97-s + 268·103-s − 20·109-s + 24·111-s + ⋯
L(s)  = 1  + 2/3·3-s + 12/7·7-s − 5/9·9-s − 1.53·13-s + 4/19·19-s + 8/7·21-s + 0.719·25-s − 1.03·27-s + 1.41·31-s + 0.324·37-s − 1.02·39-s + 3.81·43-s + 0.204·49-s + 8/57·57-s + 2.81·61-s − 0.952·63-s + 4/67·67-s + 2.24·73-s + 0.479·75-s − 0.253·79-s − 0.135·81-s − 2.63·91-s + 0.946·93-s − 1.93·97-s + 2.60·103-s − 0.183·109-s + 8/37·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(27.3698\)
Root analytic conductor: \(2.28727\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 36864,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.691447781\)
\(L(\frac12)\) \(\approx\) \(2.691447781\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p^{2} T^{2} \)
good5$C_2^2$ \( 1 - 18 T^{2} + p^{4} T^{4} \)
7$C_2$ \( ( 1 - 6 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 210 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 66 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 930 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 1394 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2210 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 190 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 1746 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 1554 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 86 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 5406 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 8370 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 14690 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 94 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52270550173641442467250105425, −12.07533194086664122703912395565, −11.46749126503602838245904584622, −11.15273418806810480033068710746, −10.77243614813820501516033385695, −9.807868415336828821423410667152, −9.751796755197434385074848354339, −8.860349239253088693888270816133, −8.575045983740774084667128233337, −7.895983195278810667827954871521, −7.68884831408676266610086175556, −7.11015658890692328733828258675, −6.28255053067563499979673230672, −5.50803362391592836641157649931, −4.97674300282699422541812807906, −4.51932106171602055780806225932, −3.71510029959258957485593944174, −2.44784232092364310126463474209, −2.44172152162155152725027068676, −0.979802016761469266475686427400, 0.979802016761469266475686427400, 2.44172152162155152725027068676, 2.44784232092364310126463474209, 3.71510029959258957485593944174, 4.51932106171602055780806225932, 4.97674300282699422541812807906, 5.50803362391592836641157649931, 6.28255053067563499979673230672, 7.11015658890692328733828258675, 7.68884831408676266610086175556, 7.895983195278810667827954871521, 8.575045983740774084667128233337, 8.860349239253088693888270816133, 9.751796755197434385074848354339, 9.807868415336828821423410667152, 10.77243614813820501516033385695, 11.15273418806810480033068710746, 11.46749126503602838245904584622, 12.07533194086664122703912395565, 12.52270550173641442467250105425

Graph of the $Z$-function along the critical line