Properties

Label 4-192e2-1.1-c1e2-0-12
Degree $4$
Conductor $36864$
Sign $-1$
Analytic cond. $2.35048$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·9-s − 4·11-s − 2·17-s + 4·19-s − 8·23-s + 2·25-s + 4·29-s − 10·31-s − 4·37-s − 2·41-s + 4·43-s − 8·47-s + 6·49-s − 4·53-s − 8·59-s − 4·61-s + 6·63-s + 8·67-s − 4·73-s + 8·77-s − 2·79-s + 9·81-s + 4·83-s + 2·89-s − 16·97-s + 12·99-s + ⋯
L(s)  = 1  − 0.755·7-s − 9-s − 1.20·11-s − 0.485·17-s + 0.917·19-s − 1.66·23-s + 2/5·25-s + 0.742·29-s − 1.79·31-s − 0.657·37-s − 0.312·41-s + 0.609·43-s − 1.16·47-s + 6/7·49-s − 0.549·53-s − 1.04·59-s − 0.512·61-s + 0.755·63-s + 0.977·67-s − 0.468·73-s + 0.911·77-s − 0.225·79-s + 81-s + 0.439·83-s + 0.211·89-s − 1.62·97-s + 1.20·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(2.35048\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 36864,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$C_4$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$D_{4}$ \( 1 - 4 T + 38 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$D_{4}$ \( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 2 T + 26 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$D_{4}$ \( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T - 26 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 8 T + 38 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$D_{4}$ \( 1 + 2 T + 46 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 2 T - 30 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.4117742862, −14.8327200884, −14.2536429882, −13.9063288342, −13.5647638135, −12.9637549394, −12.4906190459, −12.1830138366, −11.5218464884, −11.0520681637, −10.6206989714, −10.0370020849, −9.66407829504, −8.96867725850, −8.62544662038, −7.82871510177, −7.64166603612, −6.76606751735, −6.26636603954, −5.55867905717, −5.26034423163, −4.35491012942, −3.43795678588, −2.93493481935, −2.03781245881, 0, 2.03781245881, 2.93493481935, 3.43795678588, 4.35491012942, 5.26034423163, 5.55867905717, 6.26636603954, 6.76606751735, 7.64166603612, 7.82871510177, 8.62544662038, 8.96867725850, 9.66407829504, 10.0370020849, 10.6206989714, 11.0520681637, 11.5218464884, 12.1830138366, 12.4906190459, 12.9637549394, 13.5647638135, 13.9063288342, 14.2536429882, 14.8327200884, 15.4117742862

Graph of the $Z$-function along the critical line