L(s) = 1 | − 4·7-s − 9-s − 4·17-s − 8·23-s − 2·25-s − 12·31-s + 4·41-s + 8·47-s + 6·49-s + 4·63-s + 8·71-s + 4·73-s + 4·79-s + 81-s − 20·89-s − 4·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 16·119-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 1/3·9-s − 0.970·17-s − 1.66·23-s − 2/5·25-s − 2.15·31-s + 0.624·41-s + 1.16·47-s + 6/7·49-s + 0.503·63-s + 0.949·71-s + 0.468·73-s + 0.450·79-s + 1/9·81-s − 2.11·89-s − 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 1.46·119-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 + T^{2} \) |
good | 5 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 7 | $C_4$ | \( 1 + 4 T + 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 + 10 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 17 | $C_4$ | \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 10 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 - 14 T^{2} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 12 T + 90 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 37 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 41 | $D_{4}$ | \( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - 38 T^{2} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 - 8 T + 78 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 + 66 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2^2$ | \( 1 - 38 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2^2$ | \( 1 - 54 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $D_{4}$ | \( 1 - 4 T - 38 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 97 | $D_{4}$ | \( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.3356918186, −14.9651071769, −14.2202237703, −13.8955029926, −13.5283819377, −12.8588340827, −12.5843704908, −12.2503711114, −11.4952841378, −11.0784344080, −10.6184727520, −9.88828089691, −9.68850889602, −9.05123762106, −8.69925219599, −7.92900457047, −7.38284931395, −6.80268857453, −6.22289019375, −5.81876004626, −5.16244011756, −4.02200689128, −3.81293437539, −2.82322703797, −2.03766782553, 0,
2.03766782553, 2.82322703797, 3.81293437539, 4.02200689128, 5.16244011756, 5.81876004626, 6.22289019375, 6.80268857453, 7.38284931395, 7.92900457047, 8.69925219599, 9.05123762106, 9.68850889602, 9.88828089691, 10.6184727520, 11.0784344080, 11.4952841378, 12.2503711114, 12.5843704908, 12.8588340827, 13.5283819377, 13.8955029926, 14.2202237703, 14.9651071769, 15.3356918186