Properties

Label 4-1920e2-1.1-c1e2-0-32
Degree $4$
Conductor $3686400$
Sign $1$
Analytic cond. $235.048$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 2·7-s + 3·9-s − 4·11-s − 2·13-s + 4·15-s + 6·17-s − 2·19-s − 4·21-s − 2·23-s + 3·25-s − 4·27-s − 6·31-s + 8·33-s − 4·35-s + 2·37-s + 4·39-s − 4·41-s − 4·43-s − 6·45-s − 18·47-s + 6·49-s − 12·51-s − 20·53-s + 8·55-s + 4·57-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 0.755·7-s + 9-s − 1.20·11-s − 0.554·13-s + 1.03·15-s + 1.45·17-s − 0.458·19-s − 0.872·21-s − 0.417·23-s + 3/5·25-s − 0.769·27-s − 1.07·31-s + 1.39·33-s − 0.676·35-s + 0.328·37-s + 0.640·39-s − 0.624·41-s − 0.609·43-s − 0.894·45-s − 2.62·47-s + 6/7·49-s − 1.68·51-s − 2.74·53-s + 1.07·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3686400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3686400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3686400\)    =    \(2^{14} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(235.048\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3686400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 - 2 T - 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_4$ \( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 6 T + 26 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 6 T + 54 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 2 T + 58 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 18 T + 158 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 - 8 T + 94 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 18 T + 222 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.870590244751674595569211086365, −8.556662167541131667203614752578, −7.957726842918716132632936019712, −7.87162060268002339101369770475, −7.44978265672860267518086519382, −7.26041274963807617144640624302, −6.43381091861653421660319399949, −6.34911841690196623403282083067, −5.65243634256258270361168155659, −5.36159610550057297689381686211, −4.88267671041587512861156794536, −4.71103619728774690115899463162, −4.23648922530256013765343877490, −3.49225941958914894474644998999, −3.21543304264118352878127473748, −2.56167352194775583112377704009, −1.64515480675232072702122877738, −1.38280231511189094058156625798, 0, 0, 1.38280231511189094058156625798, 1.64515480675232072702122877738, 2.56167352194775583112377704009, 3.21543304264118352878127473748, 3.49225941958914894474644998999, 4.23648922530256013765343877490, 4.71103619728774690115899463162, 4.88267671041587512861156794536, 5.36159610550057297689381686211, 5.65243634256258270361168155659, 6.34911841690196623403282083067, 6.43381091861653421660319399949, 7.26041274963807617144640624302, 7.44978265672860267518086519382, 7.87162060268002339101369770475, 7.957726842918716132632936019712, 8.556662167541131667203614752578, 8.870590244751674595569211086365

Graph of the $Z$-function along the critical line