Properties

Label 4-1920e2-1.1-c1e2-0-27
Degree $4$
Conductor $3686400$
Sign $1$
Analytic cond. $235.048$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 2·7-s + 3·9-s + 4·11-s + 2·13-s + 4·15-s + 6·17-s + 2·19-s + 4·21-s − 2·23-s + 3·25-s + 4·27-s − 6·31-s + 8·33-s + 4·35-s − 2·37-s + 4·39-s − 4·41-s + 4·43-s + 6·45-s − 18·47-s + 6·49-s + 12·51-s + 20·53-s + 8·55-s + 4·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 0.755·7-s + 9-s + 1.20·11-s + 0.554·13-s + 1.03·15-s + 1.45·17-s + 0.458·19-s + 0.872·21-s − 0.417·23-s + 3/5·25-s + 0.769·27-s − 1.07·31-s + 1.39·33-s + 0.676·35-s − 0.328·37-s + 0.640·39-s − 0.624·41-s + 0.609·43-s + 0.894·45-s − 2.62·47-s + 6/7·49-s + 1.68·51-s + 2.74·53-s + 1.07·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3686400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3686400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3686400\)    =    \(2^{14} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(235.048\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3686400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.945096257\)
\(L(\frac12)\) \(\approx\) \(6.945096257\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$D_{4}$ \( 1 - 2 T - 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_4$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 6 T + 26 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 30 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 6 T + 54 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 2 T + 58 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 4 T + 22 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 18 T + 158 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 - 4 T + 70 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 - 8 T + 94 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 18 T + 222 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.265161774662914356228456599679, −8.938212050614217561674344687628, −8.554115865648414342059513737100, −8.536944800966829093560961497328, −7.75203957098456649763370360724, −7.60189826672547491517745518044, −7.03588215097266470636524751115, −6.82149031711063709499678238024, −6.15493859133749347411055667599, −5.84583346946819355992170483941, −5.21603207312641333367231469499, −5.19608158655136379746629184982, −4.17361941381657364250233413630, −4.11470428733386801546730423320, −3.43103357452412713358626233328, −3.16769132358773592150243641316, −2.46924956458657355319551876131, −1.85249753814038468668508443602, −1.49221599261218438514184861275, −0.998208230368968377456461955320, 0.998208230368968377456461955320, 1.49221599261218438514184861275, 1.85249753814038468668508443602, 2.46924956458657355319551876131, 3.16769132358773592150243641316, 3.43103357452412713358626233328, 4.11470428733386801546730423320, 4.17361941381657364250233413630, 5.19608158655136379746629184982, 5.21603207312641333367231469499, 5.84583346946819355992170483941, 6.15493859133749347411055667599, 6.82149031711063709499678238024, 7.03588215097266470636524751115, 7.60189826672547491517745518044, 7.75203957098456649763370360724, 8.536944800966829093560961497328, 8.554115865648414342059513737100, 8.938212050614217561674344687628, 9.265161774662914356228456599679

Graph of the $Z$-function along the critical line